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ABSTRACT 
 

 
 Risks to life, property, infrastructure and even environmental security 

emanate from a variety of hazard sources.  Key to reducing this risk is the ability 

to measure it and present it decision-makers and stakeholders in a meaningful 

and understandable way.  Currently, there exist no comprehensive hazard risk 

indices for the United States that have the ability to capture and convey a 

contemporary conceptualization of risk to hazards.  Such an index, the World 

Risk Index, exists at the global level.  The World Risk Index serves as an analog 

for further research on risk at various scales. 

 The purpose of this dissertation is to facilitate an increased awareness of 

risk and the different factors that contribute to it and to provide a method for 

easily assessing risk at subnational scales.  The following broad research 

questions frame this work: 

a) Can the World Risk Index be customized to a subnational scale in the 
United States?  Which indicators are appropriate for use at the state and 
county level in the United States? 
 
b)  Does the disaggregation of disaster risk to state and county scales 
provide more detailed understanding of the spatial distribution of risks and 
the components of risk? 
 
c)  How does the risk assessment produced by a top-down approach 
compare to other US risk assessments at the county scale? 
   

To answer these questions, this dissertation is focused on the development of a 

risk index, the United States Disaster Risk Index (USDRI), tailored to assess risk 
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at various scales.  The USDRI is a proof of concept, and uses the methodology 

and indicators of the aforementioned World Risk Index to establish a baseline for 

evaluating risk at the state and county level.  The validity of the index is 

examined through exploratory spatial statistical analysis.  The results are also 

compared to loss data in order to assess whether the USDRI explains variability 

in loss.  In addition, the USDRI and its components are compared to existing 

indices to determine similarities and differences.   

 The results indicate that the USDRI provides new insight into risk at the 

state and county scale in the US. The ability to quickly tailor the index to various 

hazards of interest – to include potential hazards such as sea-level rise - proves 

to be one of its strongpoints.  The USDRI, with some modification to the 

exposure component, shows the ability to explain variation in loss, especially at 

the state level.  When compared to existing indices, USDRI risk and vulnerability 

show many similarities but also some important differences.  For example, both 

the USDRI vulnerability component and the established Social Vulnerability Index 

show clusters of lower vulnerability in the Northeast US, but the USDRI shows 

large clusters of vulnerability in the Midwest that the Social Vulnerability Index 

does not.  When the lessons learned are taken into consideration, the USDRI is 

successful in providing a baseline for the future evaluation of risk at the 

subnational level.   
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CHAPTER 1: INTRODUCTION 

“We cannot eliminate disasters, but can mitigate the risk. We can lessen the 
damage. We can save more lives.  Disasters caused by natural hazards are 
taking a heavy toll on communities everywhere — in countries rich and poor. 

They are outpacing our ability to respond.” 
 

UN Secretary-General Ban Ki-moon (2011) 

1.1 Measuring disaster risk: establishing a baseline for progress 

Indonesian President Dr. Susilo Bambang Yudhoyono recently stated that 

“natural disasters in all…forms have been the greatest threats to our national 

security and public well-being” (Yudhoyono 2012).  Yudhoyono’s remarks 

underscore the increasing recognition that natural disasters not only represent a 

threat to life and property but can also potentially impact state cohesiveness and 

function.  High-impact natural hazards can cause disasters that threaten the 

status quo, especially in already unstable countries.  These “fragile states” also 

suffer inordinately from climate change (Hazma and Cordena, 2012).  In the 

extreme, natural disasters could potentially serve as triggering events for state 

failure (Hales and Miller 2010).   

In a contemporary context, national security can be defined as “the 

measurable state of the capability of a nation to overcome the multi-dimensional 

threats to the apparent well-being of its people and its survival as a nation-state 

at any given time…” (Paleri 2008:52).  Historically, national security was framed 

mainly 
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in a military context, wherein the main idea was to protect the state from the 

military aggression of other states.  The concept of national security has evolved, 

with significant debate, to recognize a variety of non-military threats to state 

survival, including economic, energy, and environmental threats, among others 

(Romm 1993).   

Environmental security, put simply, examines the threats posed by 

environmental events at scales ranging from individual to global.  Although 

environmental threats have existed throughout history, it was only recently that 

the concept of looking at human and state security through an environmental 

lens gained importance.  Beginning in the late 1970s, scholars began to explore 

the notion that security could be threatened by more than military power (Brown 

1977; Ullmann 1983).  Since that time, a variety of approaches to environmental 

security have developed.  These include initial efforts to place importance on the 

environment, the relationship between environmental concerns and conflict, the 

effect that conflict and militarization has on the environment, and finally, the 

connection between the environment and human security (Khagram et al. 2003).  

Sources of insecurity based on environmental concerns can include: access to 

and control of natural resources; the inability of systems to adapt to degrading 

resources, ecosystem change, natural disasters, or disease; and, environmental 

crime (Jasparro 2009).   From the geographic perspective comes the recognition 

that environmental issues are complex, exist at multiple scales and across 

boundaries, and are not easily addressed at the international level (Wood et al. 

1999).  Other geographers have explored more specific topics within 
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environmental security, such as the link between armed conflict and natural 

resources (LeBillion 2001). Geographer Simon Dalby has written extensively on 

environmental security (Dalby 2002) and critiqued approaches to the topic (Dalby 

2004).  Importantly, Dalby notes that new insights have shifted emphasis in the 

environmental security realm from topics like environmental degradation to 

human security and vulnerability (Dalby 2008). 

Although there is a robust literature concerning environmental security, it 

tends to focus on large scale, slow onset issues such as resource scarcity 

(Homer-Dixon 1994; Kahl 2006) or, more broadly, climate change (Schubert et 

al. 2008).  Less common are examinations of disasters as they relate to security.  

However, recent disasters have shown the need to examine their implications for 

security at multiple scales.  The 2010 earthquake in Haiti caused the breakdown 

of an already weak state security structure (Bolton 2011).  The effects of 

disasters may be exacerbated (i.e. the scale at which they cause insecurity 

increases) when they occur in less-developed countries, but developed countries 

also have vulnerabilities that disasters can expose.  For instance, Hurricane 

Katrina in 2005 and the 2011 Japan earthquake and tsunami both showed that 

even in developed countries, the impact of natural disasters can be far reaching 

and, importantly, disproportionately impact vulnerable segments of a population 

(Futamura et al. 2011).   

Underlying the concept of natural disasters and security is the inherent 

vulnerability present in populations that are – or could be – impacted by 

disasters.   Recent research avenues seek to better explain the true nature of 
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natural hazards, their effects on the human landscape, and the factors that turn 

natural hazards into disasters.  For instance, the idea of applying the concept of 

resilience to natural hazards (Mileti 1999) led to efforts to develop indicators and 

measure the disaster resilience of places (Cutter et al. 2008).  The idea that 

social inequality contributes to disaster (O’Keefe et al. 1976) has led to attempts 

to identify the causes of vulnerability (Blaikie et al. 1994) and measure social 

vulnerability (Cutter et al. 2003).   These and other research approaches have 

led to the notion that disasters and disaster risk are ongoing problems rather than 

stand-alone events, and that human vulnerability is a central concern in the 

development of disaster policy (Comfort et al. 1999).  These forays into the 

human side of natural hazards complement a robust understanding of the 

physical nature of hazards.   

Although the understanding of vulnerability to natural disasters has greatly 

increased, the ability to effectively identify and measure disaster risk and apply 

this knowledge toward disaster risk reduction – and ostensibly contribute to 

better state and environmental security - is both nascent and lacking (Birkmann 

2007).  There have been a number of recent attempts to index disaster risk with 

an included vulnerability component.  Most are focused on the global or regional 

scales; less attention has been paid to subnational scales.  Even those studies 

that deal with individual states tend to focus on less-developed states.  For the 

United States, although there are various risk assessments (e.g. state hazard 

mitigation plans), there is currently no comprehensive disaster risk index that 

captures contemporary understandings of risk and vulnerability at the state or 
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county level.  Such an index potentially has a variety of applications.  For 

instance, it would provide a common frame of reference and allow for 

comparison of hazards, vulnerability, and risk between states and counties.  This 

could enhance existing risk assessments by providing the comprehensive 

knowledge of vulnerability and risk to hazards required for emplacement of the 

appropriate mitigation measures and infrastructure.  The multi-hazard approach 

of the WRI encourages risk-reduction measures that deal with more than one 

hazard, as opposed to reducing the risk of one hazard at the possible expense of 

higher risk to others (Cutter et al. 2000). More broadly, the index could be useful 

in assessing how well states, counties, and the US as a whole are progressing in 

the reduction of risk and vulnerability.  One specific example of a direct 

contribution of a national-level risk index is to help the US meet its goals under 

the Hyogo Framework for Action, a 2005 plan designed to reduce disaster risk.  

One of the benchmarks called for in the framework is the presence of a national 

level risk index, something the US does not currently have.   

Although there is currently no comprehensive, contemporary disaster risk 

index for the United States, such indices do exist at the global and regional scale.  

Of particular import to this study is the UN’s World Risk Index (WRI).  The WRI is 

an ambitious effort to quantify the likelihood that a country will be affected by a 

disaster, with the stated purpose of sensitizing the public and policymakers to 

disaster risk.  The WRI recognizes that disaster risk is influenced by both internal 

(structure, process, and framework) and external (natural events and climate 

change) factors, highlighting the idea that there are multiple ways to reduce risk.  



www.manaraa.com

   

6 
 

The WRI’s indicators are found in four modular components: exposure, which 

accounts for the likelihood that a country will be affected by a natural hazard; 

susceptibility, which considers aspects such as infrastructure and economy; 

coping capacities, which account for indicators such as preparedness, medical 

services, and societal aspects; and adaptive capacities, which include education, 

investment, and environmental status.  The WRI creators note that most global 

risk indices are focused on exposure; so in their index they attempt to bridge the 

physical-human gap at the global level that this dissertation seeks to bridge at 

the US national level (ADW 2012a).   

 

1.2  Research objectives 

 In order to establish a baseline for understanding and acting to reduce 

contemporary risk at the subnational scale, it is imperative that a method for 

assessing that risk exists.  Thus the purpose of this dissertation is to create and 

evaluate a disaster risk index for the United States at two administrative scales, 

states and by counties for a single state, with the objective of providing an easily 

understandable and replicable starting point for the assessment of risk at local 

scales.  The following research questions inform this dissertation: 

a) Can the World Risk Index be customized to a subnational scale in the 

United States?  Which indicators are appropriate for use at the state level 

in the United States? 

b)  Does the disaggregation of disaster risk to 1) state and 2) county 

scales provide more detailed understanding of the spatial distribution of 
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risks and the components of risk? Or, given the availability, quality, and 

resolution of data do the drivers of disaster risk at the subnational level 

merely mirror the extant pattern at the national scale? 

c)  How does the risk assessment produced by a top-down approach 

compare to other US risk assessments at the county scale?  What unique 

value or insights can be gained from using a top down approach? 

 

1.3 Dissertation structure 

 This document captures the creation and evaluation of a disaster risk 

index at the state and county levels in the US.  Chapter Two summarizes the 

contemporary concept of risk as it is presented in this dissertation, and includes 

discussions of the four components of the USDRI: exposure, susceptibility, 

coping capacity, and adaptive capacity.  The chapter also includes an 

assessment of various other methods to assess disaster risk, as well as a section 

on index construction.   

 The central focus of this work is found in Chapters Three, Four, and Five.  

Chapter 3 breaks down, in detail, the construction of the exposure component of 

the USDRI, while Chapter 4 details the same for the vulnerability component. For 

each, to include each subcomponent of vulnerability, the variables, weighting, 

and overall calculation is shown.  In addition, each subcomponent is evaluated 

using exploratory spatial statistical techniques in order to determine the spatial 

patterns, they express.   In Chapter Four, the overall vulnerability component is 

compared to an existing assessment of vulnerability, the Social Vulnerability 



www.manaraa.com

   

8 
 

Index (SoVI), in order to assess whether they produce similar patterns of 

vulnerability at different scales and how well they relate to economic and human 

losses. 

 Chapter Five discusses the construction of the overall USDRI from the 

components detailed in Chapters Three and Four.   As with its components, 

overall risk is explored visually and statistically, to include with exploratory spatial 

statistics in order to determine patterns and clusters of risk at both scales of 

analysis.  One interesting feature of this chapter highlights the benefit of the 

modularity of the USDRI by displaying its ability to easily assess risk for 

individual hazards in addition to the multiple hazards compiled in the exposure 

component.  Finally, the ability of risk at both scales of analysis to explain the 

variance in loss is compared to the ability of the WRI to explain variance in global 

losses.  This provides a measure of both the efficacy of the USDRI, as well as an 

assessment of the success of the overall effort to downscale the WRI.   

 Chapter Six of this dissertation provides a summary of the findings 

detailed within it.  The chapter includes a discussion of the shortcomings of and 

recommendations for improving future iterations of the index that were noted 

during its construction.  Additionally, the final chapter explores the potential 

research avenues generated by this work. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Overview 

This literature review shows that in general there is both a lack of and a 

need for a comprehensive national disaster risk index in the US.  Losses from 

natural hazards in the United States continue to increase.  According to the 

University of South Carolina’s Hazards and Vulnerability Research Institute, five 

of the top ten years for annual losses have occurred since 2002.  The last year 

on record, 2012, saw losses of $38.6 billion ($2012 US), the third highest annual 

total loss ever in the US (HVRI 2014).  Slowing the increasing trend in losses 

requires a concerted effort to decrease vulnerability and mitigate against the 

effects of future hazards (Gall et al. 2011).  Typically, the focus of disaster risk 

management is short-term, concentrating on recovery immediately after an event 

(Cutter 2013).  A key initial step in the effort to lessen the cost and other impacts 

of hazards and reduce overall risk over longer time frames is the ability to 

visualize hazard exposure and determine the factors that make populations 

vulnerable.  The USDRI provides a new way of conceptualizing, identifying, and 

understanding disaster risk in the US and could help mitigate and manage said 

risk by incorporating current research on the concepts of vulnerability, exposure, 

and risk.
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This chapter provides an overview of risk, exposure, vulnerability and its 

subcomponents, and previous attempts to describe or quantify risk.  As such, this 

research draws from literature on natural hazards, natural hazards risk 

assessment, and vulnerability.  All of the concepts central to creating and 

interpreting the USDRI have evolved over time.  In particular, the definition of risk 

has and continues to take many forms.  The World Risk Index takes a 

comprehensive approach to risk, defining it as the product of two main 

components, exposure and vulnerability.  Vulnerability is further broken down into 

three subcomponents: susceptibility, coping capacity, and adaptive capacity.  

This approach provides the theoretical background for this dissertation, as well 

as the construct and tools needed to assess risk at the subnational scale.   

 

2.2 Conceptual underpinnings: hazard, risk, and vulnerability 

Geographer Harlan Barrow’s 1923 article, “Geography as Human 

Ecology” is a seminal work in hazard studies.  Barrows, attempting to carve out 

an academic and theoretical niche for geography, proposed that human ecology 

should be unique to it and that the discipline should be mainly concerned with the 

relationship between the environment and human activity (NRC 2006).  Barrows 

understood that humans were influenced, but not governed by, the environment 

(Barrows 1923).  Although it would take time to grow and mature, Barrows 

planted the seeds for the notion that aspects of the human condition caused 

humans to be predisposed – vulnerable – to disasters.   
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The work of Barrows and the influence of and interest in large disasters 

began to bring hazards and disaster research into focus (NRC 2006a).  Early 

research in disasters came mainly from sociology, while hazards were the 

purview of geographers.  However, the increasing realization of the complexity of 

hazards and disasters has lessened the distinction between the two; a wide 

variety of disciplines now inform each.   

Numerous current definitions exist for the concepts of hazard and natural 

disaster.  Broadly defined, a hazard is a threat – arising from the interaction 

between social, technological, and natural systems - to people and/or the things 

they value.  The general concept of a hazard includes the probability of the event 

happening, as well as impact of the event on people or places (Cutter 2001b).  

Natural disasters occur when the impacts or effects of a natural hazard lead to 

increased mortality, illness, or injury and destroys/disrupts livelihoods to such a 

degree that it is perceived as exceptional and requiring outside help for recovery 

(Cannon 1994).  Contemporary definitions of both hazard and disaster are 

presented in the 2012 report by the Intergovernmental Panel on Climate Change 

(IPCC), entitled Managing the Risks of Extreme Events and Natural Disasters to 

Advance Climate Change Adaptation or SREX: 

Hazard: The potential occurrence of a natural or human-induced physical 
event that may cause loss of life, injury, or other health impacts, as well as 
damage and loss to property, infrastructure, livelihoods, service provision, 
and environmental resources. 
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Disaster: Severe alterations in the normal functioning of a community or a 
society due to hazardous physical events interacting with vulnerable social 
conditions, leading to widespread adverse human, material, economic, 
or environmental effects that require immediate emergency response to 
satisfy critical human needs and that may require external support for 
recovery (IPCC 2012:558-560). 
 

The Oxford Dictionary defines risk as a situation involving exposure to 

danger.  Table 2.1 contains other selected definitions of risk.  In general, hazards 

Table 2.1: Selected definitions of risk 

 

 

Source Definition

(Gunn 1990) The expected number of lives lost, persons injured, damage to property, and 
disruption of economic activity due to a particular natural phenomenon, and 
consequently the product of specific risk and elements at risk

(Godschalk 1991) The probability that a hazard will occur during a particular time period

(Ansell and Wharton 
1992)

Likelihood x Consequence

(Petak and Atkisson 
1992)

A function of the probability of the event occurring and the consequences of 
the event

(Cutter 1993) The measure of likelihood of occurrence of a hazard

(Lerbinger 1997) The probability that death, injury, illness, property damage, and other 
undesirable consequences will stem from a hazard

(Deyle et al. 1998) The possibility of suffering harm from a hazard

(Schwab et al. 1998) The potential losses associated with a hazard, defined in terms of expected 
probability and frequency, exposure, and consequences

(UN ISDR 2004) The probability of harmful consequences, or expected loss resulting from 
interactions between natural or human induced hazards and vulnerable 
conditions.

(DHS 2006) The combination of the frequency of occurrence, vulnerability, and the 
consequence of a specified hazardous event

(Dilley et al. 2005) A function of hazard, exposure, and vulnerability

(Birkmann and 
Wisner 2006)

A function of vulnerability and hazard (The WRI uses this definition of risk)
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risk can be thought of as either the risk of occurrence of a hazardous event 

(event risk) or the risk of a particular outcome from a hazardous event, or 

outcome risk.  Outcome risk includes both the chance of occurrence and the 

characteristics of a system (Sarewitz et al. 2003).   

In general, risk as it relates to hazards and disasters has evolved in 

concept from the mere probability that a hazard will occur (Godschalk 1991) to 

incorporate the potential outcomes of a hazard (Burton et al. 1993; Lerbinger 

1997) and the underlying socio-economic conditions that highlight vulnerability, 

or a predisposition to be adversely affected, in the place that hazard occurs.  The 

evolution in the concept of risk has taken it from a primarily physical construct to 

one that also includes societal aspects.  This is in line with the development of 

hazards research, which has advanced from a focus that was mainly on hazards 

themselves to one that includes the totality of the setting in which they occur. 

Recent definitions of hazard risk are even more comprehensive, including 

measures that - ostensibly - mitigate or lessen risk, often called coping or 

adaptive capacities (Birkmann and Wisner 2006).  Taking coping and adaptive 

capacities into consideration underscores the notion that risk is not a static 

property.  Rather, risk is a dynamic system; changes in societal characteristics 

and capacity – or indeed the physical characteristics of hazards – provide 

constant feedback to the overall evaluation of risk.   

Thus the more modern ideas about risk move the concept from describing 

the risk of a hazard to describing the risk of a disaster.  Wisner, et al. (2004) 
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describes disaster risk as a function of hazard and vulnerability, with the resultant 

risk being zero if either of these components is zero (Wolf 2012).     

Figure 2.1 depicts the expanding nature of risk over time.  The figure 

shows the evolution of the concept of risk from a relatively simple and 

straightforward definition based strictly on the hazard (at the bottom of the figure) 

to much more complex concepts that include human and environmental factors.  

Risk is depicted with open ended boundaries to account for future evolution of 

the concept.  As the understanding of risk has expanded, so too has the 

understanding of its component parts like exposure and vulnerability.   

The IPCC SREX distinguishes the definition of disaster risk from disaster 

by adding the phrase “Likelihood of occurrence over a specified period of time” to 

its previously stated definition of disaster. In addition, the SREX notes that 

vulnerability and exposure are determinants of both risk and of disaster impacts 

 

Figure 2.1: The expanding concept of risk 
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(IPCC 2012).  Note that all definitions of hazard risk in some way include a 

probabilistic component, either explicitly or within their concept of hazard, 

implying that without exposure to a particular hazard there is no risk to it.  Risk, 

then, in its modern form, can be described as a function of the interrelated 

concepts of hazard, exposure, and vulnerability.  Hazard refers to the probability 

of an event at a given magnitude occurring, vulnerability the predisposition for 

loss to occur, and exposure the entities (e.g. humans, property, infrastructure) 

actually at risk (Yin et al. 2011).  One way to visualize the interplay of these 

elements is the risk triangle (Figure 2.2), developed for insurance industry 

modelling.  The area of the triangle represents overall risk.  If any element - 

represented by the legs and base of the triangle - is reduced, then the overall 

area of the triangle is small, representing lower risk (Crichton 1999).    

Building on these concepts, the World Risk Index describes risk as “the 

interaction of a hazard and the vulnerability of societies.” (ADW 2012)  The WRI 

combines hazard and exposure by creating a probabilistic, annual measure of 

human exposure to hazard.  In so doing, it simplifies and reframes risk to a 

function of exposure and vulnerability, while making a clear distinction between 

 

Figure 2.2: The risk triangle (left).  The triangle on the right represents reduced  
risk (smaller area) as a result of lower vulnerability.  Adapted from Crichton (1999) 
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the two (Birkmann et al. 2013).  This research uses the WRI’s contemporary 

concept of risk as it replicates and downscales the WRI into a new index.  Doing 

so allows for an exploration of the WRI’s interpretation of risk at different 

geographic scales, and could provide new insight at those scales.   

The concept of vulnerability also has a plethora of definitions and 

interpretations, which include the potential for loss (Mitchell 1989) threat of 

exposure, the capacity to suffer harm, and the differences in risk between social 

groupings (Cutter 1996).  Vulnerability has both spatial and temporal aspects, 

and hazards research has long acknowledged that vulnerability to hazards 

results from both human / environment interactions as well as social and 

demographic aspects (Mileti 1999).   Bohle (2001) explored this dual nature of 

vulnerability.  To Bohle, vulnerability has in an internal aspect that concerns an 

entity’s reaction to a hazard and an external aspect that is centered on exposure 

(Bohle 2001).  As the definition of vulnerability has widened over time, it has 

come to include many internal aspects that include susceptibility to hazard, as 

well as the abilities to cope with and adapt to hazards.  Moreover, vulnerability 

takes many thematic forms, including physical, social, economic, and 

environmental (Birkmann 2006).  In general, an entity’s vulnerability to some 

outside stress is a function of its exposure to and sensitivity to that stress (Smit et 

al. 2001).   

As with risk, the concept of vulnerability to hazards has changed and 

expanded in meaning over time, moving from an internal risk factor to a multi-

dimensional concept.   There are three general themes in vulnerability research.  
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The first assumes vulnerability arises from societal factors independent of the 

event that exposes it, the second treats vulnerability as a function of proximity to 

hazards, and the third describes the hazardousness of place (Hewitt and Burton, 

1971) as being a result of biophysical and social factors (Cutter 2008).  

Importantly, Eakin and Luers’ review of the different conceptualizations of 

vulnerability argues that the various approaches to the topic are all ultimately 

necessary and even complementary (Eakin and Luers 2006). 

Cutter’s hazards of place model of vulnerability (Cutter 1996) expounds 

upon the third theme.  The model includes two sources of vulnerability that have 

spatial outcomes: biophysical vulnerability, or the intersection of society and 

biophysical conditions, as well as social vulnerability, which is described as the 

susceptibility of social groups or society to loss.   The overall vulnerability of a 

place is a result of both biophysical and social vulnerability (Cutter 1996).  Most 

of the hazards research since the model was introduced (e.g. Brooks et al. 2005; 

Wood et al. 2010; Schmidtlein et al. 2011) have used the hazards of place 

concept or some offspring of it as a conceptual framework (Yorke et al. 2013).  

As work on an integrated concept of vulnerability has advanced from the 

groundwork laid by the hazards of place model, the societal component has 

continued to increase in importance.  Moreover, the idea of feedback has also 

been incorporated into vulnerability models, highlighting the ability of vulnerable 

groups to adjust to or cope with their vulnerability (Gall 2007).  Birkmann (2005) 

describes the expansion and change in the concept of vulnerability as 

vulnerability’s “key spheres”.  The spheres concept (Figure 2.3) shows that over 
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time the definition of vulnerability has changed and its scope has widened, but 

nested within its current form are previous concepts.  

The WRI’s understanding of vulnerability is compatible with that found in 

the IPCC Special Report on Managing the Risks of Extreme Events and 

Disasters to Advance Climate Change Adaptation, which defines vulnerability as 

the propensity or predisposition to be adversely affected (IPCC 2012).  The WRI 

capitalizes on the current expansive, multifaceted conceptualization of 

vulnerability by defining its vulnerability component as having three 

subcomponents: susceptibility, coping capacity, and adaptive capacity (Figure 

2.4).  The model describes the first vulnerability component, susceptibility, as 

“the likelihood of harm, loss, or disruption in an extreme event due to a natural 

 

   Figure 2.3: The spheres of vulnerability. Adapted from Birkmann (2005) 
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hazard.” (ADW 2012)  As such the susceptibility component of the WRI, or those 

characteristics that create in a population the predisposition for loss, captures the 

social conditions that increase vulnerability.   

The other two components, coping capacities and adaptive capacities, 

describe ways in which entities deal with the effects of hazards.  Coping 

capacities describe the tools immediately available to reduce hazard effects, 

while adaptive capacities are the longer-term, structural measures and strategy 

put in place to deal with both the effects of a past hazard and future ones (ADW 

2012).  This expansion of the understanding of the twofold nature of vulnerability 

to include both aspects that increase and aspects that decrease vulnerability 

(Wisner 2002; Turner et al. 2003) is important. 

Coping capacity is the ability to use available skills and existing resources 

(Wisner et al., 2004) to deal with adverse conditions, such as disasters (UNISDR 

2009).  Coping capacities are conditions inherent in people, communities, and 

 

Figure 2.4: Components of the World Risk Index 
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systems and are immediately available for use should the need arise.  As such 

coping capacities are utilized as soon as an event occurs (ADW 2012); they 

enable and facilitate short-term reactions to disasters.  Effective coping capacity 

is based on factors such as the availability and effectiveness of emergency 

services, adequate resource allocation, and communications (Johnson and 

Blackburn 2014). 

Adaptive capacity, complementing the shorter term nature of coping 

capacity, refers to long-term learning, actions and changes that result in 

adjustments to the potential consequences of hazards and climate change (IPCC 

2012).  Good adaptive capacity implies the ability to plan and implement actions 

that ostensibly reduce vulnerability and risk (Klein et al. 2004), implying 

measures that create changes in socio-ecological relations (Pelling 2010; 

Birkmann et al. 2011).  Because of the potential for good adaptive capacity to 

provide informed feedback and ultimately reduce risk, it has received much focus 

in both the climate change adaptation and disaster risk reduction communities.  

There are various indicators for adaptive capacity.  For example, Smit et al. 

(2001) identified wealth, technology, infrastructure, institutions, and skills/equity 

as aspects that determine adaptive capacity. 

As the WRI is heavily reliant on vulnerability in its assessment of risk, it is 

worth noting that vulnerability, as a preexisting condition rather than an outcome, 

is not observable.  Thus there is much uncertainty regarding the quantification of 

vulnerability in composite indexes.  Attempts to validate vulnerability indices or 
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those that contain vulnerability as component end up comparing pre-existing 

conditions to post-event outcomes, which is less than desirable (Tate 2011).     

 

2.3 Creating a Composite Index 

 In general, an index compiles indicator variables into a single theoretical 

variable (Hinkel, 2011); in doing so they simplify complex realities and allow for 

comparisons in space and time (Vincent, 2004).  Indices can help set standards, 

monitor change, and allow for the allocation of resources (Barnett et al. 2008).   

In the case of an index that includes vulnerability, such as the WRI, the goal is to 

operationalize a theoretical concept.  Typically this involves the use of 

subcomponents in which indicator variables are aggregated (Below et al. 2012).  

Importantly for this study, indices that describe differences in geographic units 

should be replicable (Bossel, 1999).  Keeping the number of indicators small, 

transparent, and based on widely available data helps accomplish this goal 

(Vincent, 2004). 

 Indicators are defined as “something that provides a clue to a matter of 

larger significance or makes perceptible a trend or phenomenon that is not 

immediately detectable” (Hammond et al. 1995: 1).  They provide information 

about a variety of systems, to include physical and social systems (Farrell and 

Hart, 1998).  Indictors are particularly adept at allowing for comparisons between 

similar areas, such as countries or subnational administrative units. Composite 

indicators, or indexes, contain a modeled compilation of indicators that ostensibly 

measure concepts that cannot be measured by single indicators or simpler 
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methods (Nardo et al. 2005).  There are a variety methods used to compile 

indices.  These include deductive methods, which use a low number of 

normalized variables to calculate an index score; inductive methods, which 

reduce a larger number of variables into a small number of explanatory variables 

using principles components analysis; and, hierarchical methods which group 

variables into sub-indexes that are then aggregated to compute the index (Tate 

2013).  The WRI uses the hierarchical method of index construction.  

When viewing and interpreting the results of an index such as the WRI it is 

useful to understand both the strongpoints and drawbacks of composite indexing 

(Table 2.2).  One primary concern with index construction is data.  In some 

cases, ideal or desired data may not be available, leading researchers to settle 

for poorer quality data.  In others, ideal data may be available but not widely so, 

limiting the utility of the index it is used in.  Within an index, standardization of 

data is typically required.  A common method in vulnerability indices is to scale 

variables from 0 to 100 or 0 to 1.  This normalization makes variables compatible, 

Table 2.2: Selected pros and cons of composite indexing (from Saisana and Tarantola 
2002) 

 

Pros Cons

‐Easier to interpret than looking for trends in 

many separate indicators

‐Can send misleading messages if poorly 

constructed or misinterpreted

‐Facilitate ranking administrative units based 

on complex issues

‐Can be the targets of polical challenge 

(especially indicators and weights)

‐Can summarize complex issues ‐Contain subjective judgement

‐Attract public interest to the issue at hand ‐Can lead to simplistic policy conclusions

‐Reduce the size of an indicator list ‐Require large amounts of data
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but in doing so has the drawback of forcing data into linear scales (Barnett et al. 

2008).   

To date there are no objective means to either select variables or weight 

variables and components (Bohringer and Jochem 2007; Hinkel, 2011).  

Variables are typically weighted using expert knowledge or, lacking that, equally 

weighted.  Both methods have their drawbacks.  Equal weighting assumes that 

all variables contribute the same amount to the phenomena being studied, when 

this is likely not the case.  Expert weighting depends on the availability of expert 

knowledge of variables (Below et al. 2012) and how they relate to the object of 

study, and can suffer from bias and subjectivity.   

 Another general concern for any index is that of validity.  This concern is 

particularly acute when attempting to represent a complex phenomenon such as 

vulnerability.  Indexing vulnerability is an effort to predict future outcomes; as 

such, indexes that assess vulnerability or that include it as a component cannot 

be tested or verified.  Instead, vulnerability indexes can be qualitatively assessed 

using local knowledge to see if their results reflect reality (Barnett et al. 2008).  

Choices made by the index developer, to variable selection, weighting, and 

aggregation can introduce a large amount of uncertainty into the results of an 

index.  For vulnerability indices in particular, as vulnerability increases, the 

precision of the overall index tends to decrease (Tate, 2013). 

The apparent ease with which composite indicators, especially those such 

as the WRI that produce as an end result a single number as a metric, are 

interpreted in many different forums can to lead poor, uniformed conclusions 
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about how the indicators should be used.  This is an especially important 

consideration, as indices are often used to link science and policy (Vincent 

2004).  The process can be very subjective; indices can easily be manipulated to 

produce a desired outcome.  Even so, if indexes are properly constructed and 

interpreted and if the limitations and biases (some are detailed in Table 2.2) of 

indices are understood, they can serve as valuable tools to inform policy, aid, or 

further research, among other things.    

Literature that discusses index construction (e.g. Freudenburg 2003, 

Nardo et al. 2005, Nardo et al. 2008) suggest general steps to follow when 

creating an index.  These steps include (from Nardo et al. 2008): 

  1) Selection of theoretical framework 

  2) Variable selection 

  3) Imputation of missing data 

  4) Multivariate analysis 

  5) Normalization 

  6) Weighting 

  7) Aggregation 

  8) Robustness and sensitivity. 

The creation of the WRI follows these same general steps.   

 

2.4 Frameworks for Analysis: Selected Disaster Risk Indices 

Indices such as the WRI serve a useful purpose within the realm of 

hazards and disasters.  Specifically, disaster risk indices are adept at 
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summarizing large quantities of information, presenting that information in an 

understandable way to policymakers and the public, and informing risk 

management decisions (Davidson and Lambert 2001).  The importance of 

indices to policy and decision making is evidenced by a drastic increase in the 

number of them (Nardo et al. 2005).    

A variety of disaster risk indices currently exist at different scales.  Indices 

at the national level are the most common, with prominent disaster risk indices at 

this scale including the United Nation Development Program’s Disaster Risk 

Index (UNDP 2004; Peduzzi et al. 2009), Columbia University’s Hotspots project 

(Dilley et al. 2005), and the previously discussed World Risk Index (ADW 2011).  

Also worth mentioning with this group is a regional project, the Inter-American 

Development Bank’s (IDB) Indicators of Disaster Risk and Risk Management 

(Cardona 2006; IDB 2010). Each of these indexes provides a unique approach to 

the question of disaster risk.  Table 2.3 provides a summary of these indices.  

Note that the World Risk Index is unique among the indices presented in that is 

combines its component parts into an overall assessment of risk, resulting in a 

single, comprehensive risk score that allows for comparison between countries. 

The Disaster Risk Index (DRI) (Peduzzi et al. 2009), for example, 

calculates disaster risk at the country level.  The DRI defines risk as the number 

of people killed per year, using cyclones, drought, flooding, and earthquakes in 

its model.   Further, the DRI was designed for understanding past casualties, not 

predicting future risk (Peduzzi et al. 2009).  
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Table 2.3: Summary of national level risk indices 
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The index multiplies hazard frequency, population living in an area, and a 

measure of vulnerability to compute its version of risk.  The use of hazard and 

population as exposure utilizes the same dataset, the United Nations 

Environmental Programme’s PREVIEW data (see Chapter 3 for in-depth 

discussion of the PREVIEW data), as the WRI.  The hazard data are modeled on 

a sub-national grid, while the vulnerability data are at the national level. After 

compilation, the DRI uses multiple regression to determine which indicators best 

explain mortality (UNDP 2004).  The DRI approach is flexible and allows for risk 

comparison between countries, but does have limitations.   

The Hotspots project (Dilley et al. 2005) is similar in method to the DRI, 

measuring risk in terms of exposure, mortality, and economic loss.  However, 

Hotspots focuses on a much smaller, subnational scale, as it uses 2.5 x 2.5 

square kilometer grid cells as its spatial unit of analysis (Dilley et al. 2005).  

Hotspots uses drought, cyclones, earthquakes, floods, landslides, and volcanoes 

to calculate three indices – mortality, economic losses, and proportional 

economic losses - of risk.  Of interest in the Hotspots analysis is the delineation 

of the number of hazards that affect a given area.  Many parts of the world are 

only influenced by a single hazard included in the model.  This highlights the 

issues of data availability as this scale, as well as the need to include multiple 

hazards in a composite index, especially when the scale of analysis is global or 

regional and county comparison / ranking is an outcome.   Hotspots does allow 

for comparison of overall risk with both population and approximated GDP 

(Birkmann 2007).  However, the index does not specifically include a measure of 



www.manaraa.com

 

28 
 

vulnerability.  In addition, Hotspots exposure comes from many different sources, 

unlike the DRI or WRI.  In general, these global indices, the WRI excepted, either 

do not incorporate both vulnerability and coping / adaptive capacities or do so to 

a very limited extent.   

Though a regional index, the IDB’s risk project is perhaps the most 

comprehensive of the national scale indices, as it includes four main sub-indices.  

These include the Disaster Deficit Index (economic risk), the Local Disaster Index 

(social and environmental risk from lower level events), the Prevalent 

Vulnerability Index (vulnerability, socioeconomic weakness), and the Risk 

Management Index (actions taken to reduce vulnerability and loss).   The IDB’s 

approach is fairly complex, but it has many strengths, including that fact that it 

allows for the measurement and assessment of risk management over time, and 

the fact that is allows for the identification of risk factors that should receive 

priority for risk reduction efforts (IDB 2012).  Moreover, the IDP concept of 

vulnerability is fairly consistent with that of the WRI.   

The aforementioned indices outline approaches appropriate for global or 

national scale disaster risk assessment.  There exist many efforts to frame risk at 

more local levels.  Although the global risk indices have started to address an 

expanded understanding of vulnerability, subnational indices for the United 

States have not.  For the United States, perhaps the most widely used risk 

assessment tool is the Federal Emergency Management Agency’s HAZUS 

model, which estimates losses from hazards for the US at subnational scales.  
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Although HAZUS can be used to conceptualize vulnerability, either through 

exploring the implications of economic loss and / or an independent  

understanding of the affected population, the model does not contain a specific  

vulnerability component.   

Although they are very few in number, there are subnational hazard risk 

indices for the US.  One such index is the Hurricane Disaster Risk Index (HDRI), 

which assesses hurricane risk to US coastal counties (Davidson and Lambert 

2001).  The HDRI is an early attempt to comprehensively examine risk to a single 

hazard at the subnational level, as it includes hazard, exposure, and vulnerability 

components.  The exposure component is multi-faceted, as is the vulnerability 

component, which includes socio-economic vulnerability indicators as well and 

well as physical ones.  In addition, the index has an emergency response and 

recovery component, which essentially serves as a measure of coping capacity 

(Figure 2.5).  The HDRI is a predictive index, and estimates future risk based on 

both economic and human losses.  The measure of risk it produces for each has 

no units, and is scaled from 0 to 10.  The as proof of concept, the HDRI was 

originally calculated for 15 US counties (Davidson and Lambert 2001).  Though 

more limited in scope, the HDRI contains many of the concepts of risk and model 

elements that are incorporated into the WRI.   
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 There are other indices at the subnational level that assess risk or 

components of it.  Some examine specific hazards topics such as resilience 

(Sempier et al. 2010; Orencio and Fujii 2013) and vulnerability (Cutter et al. 

2003), while others focus on places or between places (Boruff and Cutter 2007).  

Many indices focus on hazard centric approaches.  Some of these examine 

single hazards, such as earthquakes (Davidson et al. 1997); others take a multi-

hazard approach in a variety of contexts (Ferrier and Haque 2003; Blong 2003; 

Schmidt et al. 2011). 

 Another category of assessments that inform both the WRI and this work 

are integrated hazards assessments that combine hazard exposure and 

vulnerability.  Combining exposure and vulnerability provides a holistic approach 

to and adequate representation of the hazards of and among places (Cutter, 

2000).  Assessments utilizing this approach have focused on individual US cities 

 

          Figure 2.5: Conceptual framework of the Hurricane Disaster Risk Index 
           From Davidson and Lambert (2001) 
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(Schmidtlein et al. 2011), counties (Cutter et al. 2000) as well as regions (Wood 

et al. 2010; Emrich and Cutter, 2011).   

Even with the wide variety of indices and assessments that catalog or 

study risk, exposure, and vulnerability, there currently exists no comprehensive 

hazard risk index for the United States at either the state or county level.  Thus 

implementation of the WRI for the United States fills a conceptual gap in 

understanding of multi-hazard risk and its comparability with more global-level 

indices. 

   

2.5 Summary and conclusions 

 As hazard losses continue to increase, it is apparent that informed risk 

management is an essential element in any loss-reduction strategy.  A starting 

point for effective risk management is a method to catalog risk as it varies over 

space.  This allows for understanding risk as well as taking targeted actions to 

reduce it at the scales where reduction efforts are feasible.  As this literature 

review has shown, the understanding of risk and its elements, to include 

exposure and vulnerability, has and continues to evolve.  The contemporary 

conceptualization of risk has been applied in indices at the global level, and 

many risk assessments at the subnational level in the US.   

 Although there are a number of comprehensive risk indices at the global 

and regional level that present a variety of techniques for risk assessment, to this 

point none has been constructed for the United States.  For this dissertation, the 

global risk index with the most potential for applicability at subnational scales, the 
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World Risk Index, was chosen as an analog and basis for a new disaster risk 

index for the United States that bridges the gap between concept and execution 

of risk assessment.     
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CHAPTER 3: CONSTRUCTING THE USDRI - EXPOSURE 

 

3.1 Overview 

This research seeks to fill conceptual gaps in the understanding of 

disaster risk at the subnational scale for the US.  Specifically, it seeks to use a 

theoretical framework that defines risk as the intersection of hazard (exposure) 

and vulnerability, where vulnerability consists of three main subcomponents: 

susceptibility, coping capacity, and adaptive capacity.  Capturing these essential 

elements of risk in a relatively straightforward manner can go a long way towards 

increasing understanding of risk – and, by extension, understanding hazards, 

mitigation, preparedness, and resilience – among policymakers and practitioners.  

Better knowledge of the hazards that affect subnational geographic units as well 

as the weak points in the social fabric of these units that leaves them more 

susceptible or unable to cope and adapt is crucial to informing and increasing 

understanding of disaster risk. The WRI constitutes a novel approach to 

assessing risk through the use of a weighted index that explores the different 

elements of it at national level, allowing for comparisons between countries.  This 

chapter contains the conceptual framework for and explanation of the 

customization of the WRI to the US subnational level, as well as a complete 

discussion of the index’s exposure component. 
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3.2 USDRI conceptual framework and downscaling 

Taking its cue from the WRI, the US Disaster Risk Index (USDRI) 

calculates overall risk based on a conceptualization of it that includes both 

exposure and vulnerability components.  Using the WRI’s methodological 

approach and framework allows for the creation of an index that serves as a 

benchmark for evaluating subnational risk in the US.    This, ostensibly, makes 

the USDRI more comprehensive than previous attempts to examine risk to 

hazards across the entire US.   

 Global hazard risk indices help explain and bring attention to complex 

issues, and also have the benefit of allowing for comparisons between countries.  

However, they lack the ability to bring out the nuances of the phenomena they 

are describing at subnational levels.  This is even more pronounced in countries 

that experience a geographically disparate variety of hazards or whose 

populations lack homogenous socio-economic characteristics.  Boiling the risk 

score down to one number at the country level may indicate the need for risk 

management measures for that country, but does little to show how risk is 

distributed or where it may be concentrated within that country.  There is a need 

to downscale global hazard indices such as the WRI to subnational scales, as 

doing so allows for more detailed study.  Moreover, it is at subnational scales 

where efforts to reduce vulnerability and risk are most feasible and effective.  

 Downscaling is a technique typically used to interpolate coarse regional or 

global scale data into more meaningful and actionable data at smaller scales 

(Wigley et al. 1990).  It is widely used in the global climate change community to 
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create local scale data from global or regional climate modeling output (Wilby 

and Wigley 1997; Pinto et al. 2104).   In the case of the downscaling utilized in 

this dissertation, the end result – higher resolution data – is the same as in 

statistical modeling, but the way to reach that end is somewhat different.  Instead 

of making inferences about global scale risk data, this study utilizes the same 

methodology as the global scale index, but uses data from the appropriate scale 

to complete the downscale.   

 

3.3 Study area 

To assess the viability of downscaling the World Risk Index, the index is 

reconstructed at the subnational scale.  The analysis units in this research are 

the 50 states of the United States and the 46 counties in the state of South 

Carolina.  These units were chosen for a variety of reasons.  Key to this study is 

the ability to, as closely as possible, replicate the World Risk Index. The 

robustness of the data available for the United States at both the state and 

county level allows for use of the exact variables used in the WRI in many cases, 

and close proxies in others.  Additionally, the USDRI is conceived as a tool for 

decision-makers to understand and act upon risk, so it necessarily focuses on 

the main subnational administration units in the US (Emrich and Cutter 2011).  

Finally, the United States’ diverse physical and human geography presents a 

variety of hazards and societal conditions that provide for a comprehensive 

analysis of risk.   
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The state-level analysis (Figure 3.1) capitalizes on data availability and the 

diversity of US natural hazards, as it includes all five hazards used by the WRI: 

cyclones, earthquakes, flooding, drought, and sea-level rise.  Drought and 

flooding occur in every state.  Primary earthquake exposure occurs along the US 

West Coast, as well as in Alaska, Hawaii, and a large area in the middle of the 

country centered on the New Madrid Fault.  Cyclones affect the US East and Gulf 

Coasts.  Almost 3.7 million people living on the US coastline would be affected 

by a 1 meter rise in sea level.   

For the county-level construction of the USDRI South Carolina (Figure 3.2) 

is, among US states, also well suited for an effort to downscale the WRI.   From 

 

   Figure 3.1: Study area for state level USDRI 
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an exposure perspective as it also experiences all five hazards the WRI uses.  Of 

the five, earthquakes are the most infrequent; a destructive earthquake has not 

affected the state since 1886.  However, the U.S. Geological Survey (USGS) 

National Seismic Hazard Maps show that South Carolina has the highest 

earthquake hazard risk among states also exposed to tropical cyclones.  Among 

other states in the US with similar or greater earthquake risk, there is no 

exposure to tropical cyclones (Peterson et al., 2008).  South Carolina’s coastal 

counties allow sea level rise hazards to be incorporated at the subnational level.  

for this portion of the WRI to be incorporated at the sub-national level.   

 

 

 Figure 3.2: Study area for county level USDRI (Census.gov) 
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3.4 The exposure component 

The WRI uses four modular components - exposure, susceptibility, coping 

capacity, and adaptive capacity (see Figure 2.4).  Exposure is described as 

elements (for example, people and infrastructure) present in hazard zones 

(UNISDR 2009).  The WRI uses humans as its measure of exposure, calculating 

exposure by creating an average annual number of individuals exposed to 

hazard events, which include earthquakes, cyclones, drought, and flooding.  

Additionally, there is an increasing awareness that susceptibility to disasters 

comes not just from exposure to natural hazards, but also to other factors such 

as population growth and climate change (Huppert and Sparks, 2006).  One of 

the strengths of the WRI exposure component is that is can accommodate all 

hazards, contingent on the calculation of a spatially referenced exposure surface.  

To explore the idea of including hazards that are both potential and outside of the 

scope of typical hazard risk assessments the WRI includes sea-level rise as an 

additional component of its exposure calculation.   

 

3.4.1 Calculating exposure 

The overall exposure score is the aggregate of exposure to each of the 

five hazards on an annual basis, by US state and by South Carolina county.  

Exposure is calculated by creating an exposure surface and then adding the 

population located within these risk zones.  The population data used for this 

research was 2012 US population estimates found in the United States’ Census 

Bureau’s American Community Survey (ACS). 
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In the WRI model (Figure 3.3), exposure scores for cyclones, 

earthquakes, and flooding were given full weight, while drought and sea level rise 

were multiplied by .5, giving them half weight.  Drought is a slow onset hazard 

that has great spatial extent.  As such, it tends to expose large amounts of the 

population in areas that it affects, exerting undue influence on the exposure 

component as well as on the WRI as a whole.  There is also some uncertainty in 

the measurement of drought exposure (Peduzzi et al., 2009).  Exposure to sea-

level rise, while also slow onset, has a lower spatial extent than drought.  

However, as the computation of sea level rise lacks a probabilistic component, it 

is not possible to calculate annual exposure for this hazard (ADW 2012). For this 

reason as well as the uncertainty involved in projecting future risk to a hazard, 

sea level rise also received a weight of half in the WRI exposure component.  

Following the WRI method, these same weights were used for the USDRI.   

 

3.4.2. Data 

Data on all of the hazards but sea-level rise comes from the United 

Nations Environment Programme / Global Resource Information Database’s 

(UNEP/GRID) Project for Risk Evaluation, Vulnerability, Information and Early 

Warning Global Risk Data Platform (PREVIEW).  PREVIEW is a web-based 

geographic information system that provides over 60 types of data on exposure 

and risk for nine different hazards, including four used in the WRI (Giulani and 

Peduzzi 2011).  PREVIEW data, discussed in more detail later in this chapter as 

individual hazards are discussed, incorporates population exposed to hazards as 



www.manaraa.com

 

 
 

40 

 

Figure 3.3: Makeup of the WRI and USDRI exposure components 
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well as hazard frequency and spatial extent.  Thus it represents a probabilistic 

method of calculating exposure (Birkmann 2011).   

 The one hazard that PREVIEW does not cover is exposure to sea-level 

rise.  The WRI calculates sea level rise exposure using population data from the 

UNEP Global Environmental Outlook Data Portal and sea level rise data from the 

University of Kansas’ Center for Remote Sensing of Ice Sheets (CReSIS).  

Although the combination of these two datasets allows for an estimate of 

population exposed to sea-level rise, it is not feasible to include a frequency 

component for this hazard.  Thus, it is weighted differently in the WRI exposure 

calculation.  Additionally, there is considerable error found in geo-referencing the 

UNEP and CReSIS data; doing so tends to result in underestimation of exposure, 

especially for more sparsely populated areas (Birkmann, 2011). 

 To overcome this error, as well as to incorporate more recent data, the 

USDRI utilizes sea-level rise data from the Surging Seas sea level rise dataset, 

run by Climate Central.  Surging Seas combines population data from the 2010 

US Census as well as a tidal model to quantify human and structural exposure 

relative to mean high tide levels.  By using mean high tide as a benchmark, 

Surging Seas attempts to account for the underestimation of sea level rise impact 

found in works that use only elevation as a guide (Strauss et al. 2012).  At the 

time of this writing, Surging Seas data is only available for the 48 contiguous 

United States.  Thus sea-level rise data for Alaska and Hawaii were calculated 

using the method detailed in the WRI.  Statistical comparison of the Surging 



www.manaraa.com

 

42 
 

Seas and CReSIS sea level rise data using a paired samples t-test revealed that 

there was no significant difference in the means of the two datasets (sig. = 439). 

 

3.4.3 Procedures 

 For all of the hazards except for sea-level rise, rasterized physical 

exposure data was obtained from the PREVIEW data portal (Table 3.1).  These 

rasters were then clipped, using ARCMap software, with a state map of the 

United States as well as a county-level map of South Carolina.  To determine  

exposure for each individual hazard, the raster values within each state were 

summed.  For sea level rise, data were obtained directly from Climate Central for 

each of the US states and South Carolina counties found in the study, with the 

exception of Alaska and Hawaii.  For these two states, rasters of UNEP 

population and CReSIS sea level data (1 meter increase) were clipped, and then 

the number of people found in areas where the population and sea-level rise 

rasters intersected was used as the exposure surface.   

Table 3.1: Variables in the exposure component

Exposure Variable (N=5) Source Supporting Literature 
Physical exposure to 
cyclones 

PREVEW Global Risk Data Platform Giulani and Peduzzi 
(2011) 

Physical exposure to 
earthquakes 

PREVEW Global Risk Data Platform Giulani and Peduzzi 
(2011) 

Physical exposure to 
floods 

PREVEW Global Risk Data Platform Giulani and Peduzzi 
(2011) 

Physical exposure to 
drought 

PREVEW Global Risk Data Platform Giulani and Peduzzi 
(2011) 

Physical exposure to 
sea-level rise 

Surging Seas Data Portal (48 
contiguous states) CReSIS (Alaska 
and Hawaii)  

Strauss et al. (2012)  
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The final exposure value is the sum of the weighted populations at risk 

divided by the total population in the enumeration unit (state and/or county).  It is 

expressed as a percentage, and represents the number of people in a 

geographic area exposed to all in the model on an annual basis. 

 

3.5 Analysis of the exposure components 

 

3.5.1 Cyclone exposure 

Cyclone exposure for the USDRI is calculated using PREVIEW data, 

shapefiles for the US and South Carolina, and ARC Map software.  The 

PREVIEW data used for calculating exposure consists of annual population 

exposed to both hurricane force winds and Saffir-Simpson hurricane category 1 

equivalent storm surge.  The wind data is comprised of data from two sources 

spanning the period 1969-2009. The first is the National Oceanic and 

Atmospheric Association’s (NOAA) National Climatic Data Center (NCDC) 

(International Best Track Archive for Climate Stewardship (IBTrACS).  IBTrACS is 

a compilation and, using modern techniques, a reanalysis of many different 

sources of cyclone track data (Knapp et al. 2010).  The second is a GIS model 

designed by UNEP-GRID that takes into account the movement of cyclones, 

allowing for a determination of exposed population (Giulani and Peduzzi 2011).   

PREVIEW data for cyclone surge comes from four different sources.  

Aside from the aforementioned UNEP-GRIP GIS algorithm, PREVIEW uses a 

cyclone best track dataset, a digital elevation model at 90m resolution, and a 
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population overlay from the LandScanTM Global Population database to 

calculate the number of people affected by surge. Once exposure data from wind 

and surge was processed, the exposure data from the resulting rasters was 

combined to produce an overall cyclone exposure surface. Figure 3.4 provides a 

visual representation of the technique for compiling cyclone exposure.  This 

same general process is repeated for each hazard in the exposure component.   

 The calculation of cyclone exposure for the US shows 1.68 percent of the 

population exposed to cyclone winds and/or surge on an annual basis.  Of that 

total, approximately 10 percent of the exposure is due to surge, with the 

remainder due to wind.  All of the surge exposure is along the Gulf and Atlantic 

coasts, while wind exposure is found in most states east of the Mississippi River.  

 

   Figure 3.4: Compilation of cyclone exposure for SC counties 
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Although the wind exposure is highest for coastal states, interior states also show 

some exposure based on the fact that cyclones continue to produce winds after 

landfall.  For the states, mean exposure to cyclones is 1.48 percent, with a 

standard deviation of 1.93.  Cyclone exposure ranges from no exposure 

(numerous states) to 6.24 in Connecticut (see Appendix A).  

 South Carolina’s overall annual exposure to cyclones is 3.7 percent.  

Within the state, surge exposure is found in coastal counties, while wind 

exposure is more widespread.  As expected, the highest values of overall 

cyclone exposure are in the coastal counties.  Mean SC county exposure is 3.3 

percent, with a standard deviation of 4.28.  South Carolina’s cyclone exposure 

ranges from no exposure (six counties) to 20.6 percent in Georgetown County 

(see Appendix A).      

 

3.5.2 Earthquake exposure 

The PREVIEW data for earthquakes gives annual exposure to 

earthquakes based on the Modified Mercalli intensity scale, with data from 1973-

2007. The earthquake intensity data comes from the US Geological Survey’s 

(USGS) Shakemap Atlas.  Intensity information is combined with LandScanTM 

population data to produce the exposure surface (Giulani and Peduzzi, 2011).    

The USDRI uses exposure to Modified Mercalli Intensity 5 (MM5) as a 

benchmark to calculate exposure for the US.  PREVIEW data contains exposure 

to both MM5 and MM9 earthquakes, but there was no MM9 exposure at the SC 

county level and negligible MM9 exposure at the state level.   



www.manaraa.com

 

46 
 

 For the United States, 1.5 percent of the population is exposed to MM5 

earthquakes on an annual basis.  Earthquake exposure in the US shows two 

distinct concentrations.  States in the Pacific Rim, to include Alaska and Hawaii 

and the US West Coast have high exposure due to the numerous faults 

associated with the interaction of tectonic plates in these areas.  The second 

exposure concentration is in the center of the US in the vicinity of the New 

Madrid seismic zone, which stretches across six states and is where highly 

populated areas exist over or near a fault system that has produced large 

earthquakes in the past.  Mean state exposure is .41 percent, with a standard 

deviation of 1.69.  US earthquake exposure ranges from none (16 states) to 

11.61 (California). For South Carolina, earthquake exposure is negligible, as 

according to PREVIEW data only 58 people in the state are exposed on an 

annual basis.  This lack of exposure is a product of the relatively short time 

period of the earthquake exposure surface (1973-2007), and masks the fact that 

South Carolina is at risk of earthquakes over the long-term, as the Charleston, 

SC area experienced a large, devastating earthquake in 1886.  

 

3.5.3 Flood exposure 

The PREVIEW flooding surface used in the USDRI comes from multiple 

sources.  A GIS model is used to estimate peak flow and flooding surfaces.  

Observed flood data from the Dartmouth Flood Observatory for the period 1997-

2009 is also included in the calculation, as is data from the UNEP-GRID flood 

dataset, which is used to calculate return period.  These components are 



www.manaraa.com

 

47 
 

combined with the LandScanTM population database to produce the exposure 

surface (Giulani and Peduzzi, 2011). 

 Flood exposure exists in most US states, with .11 percent exposed 

annually.  The highest levels of flood exposure are in the eastern US, especially 

in states that contain parts of major US river systems.  Kentucky has the highest 

rate, with .5 percent of its population exposed.  Within South Carolina, the 

PREVIEW exposure for flooding totals .03 percent, with counties along the coast 

as well as a small area in the northwest part of the state showing the highest 

values.  The small exposure values for flooding are counterintuitive given 

knowledge of the flooding hazard in the US.  This is likely a product of how the 

exposure surface was computed.  See Section 3.5.6 for more details. 

 

3.5.4 Drought exposure 

Compared to cyclones, earthquakes, and floods, drought proves more 

difficult to include in the exposure component because it is a slow onset, long 

duration, and geographically widespread hazard.  PREVIEW drought calculations 

are based on the Standardized Precipitation Index (SPI), which quantifies 

precipitation deficit over time (Guttman 1998).  PREVIEW uses a GIS model of 

the SPI, a global precipitation dataset, and LandScanTM population data to 

determine drought exposure.  Because of the aforementioned nature of drought, 

it results in exposure values that are quite high compared to the other hazards.  

For example, annual drought exposure for the US is approximately 78.5 million 

people, which is almost eight times higher than the amount of all other indexed 
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hazards combined.  Even when drought is only given half weight, as it is in the 

WRI, it accounts for the vast majority of exposure in the US.  While this may be 

the case in absolute terms, the result is that drought dominates the exposure 

component, as well as the overall risk index, when it is calculated for the US.  

This phenomena is explored further in the results section of this research; the 

risk index is present both with and without the presence of drought.   

 Drought exposure exists in every US state, with areas of high exposure 

found on the West Coast, in the Midwest, and in the Southeast.  US drought 

exposure has a mean of 24.89 percent, with a standard deviation of 7.34.  

Overall drought exposure ranges from 6.3 percent in Alaska to 30.7 percent in 

Wyoming.   For South Carolina, every county in the state is exposed to drought, 

with 25.76 percent of the state’s population exposed annually.  County drought 

exposure in SC has a mean of 29.2 percent, with a standard deviation of 13.2 

percent.  Jasper County has the highest drought exposure, with 100 percent 

exposed annually (although when weighted for the USDRI, this figure drops to 50 

percent).  This implies that Jasper is in constant drought, which is not the case.  

Statistical examination of drought exposure values for SC counties shows that 

Jasper’s value is an outlier, as is the value for Marion County (58.29 percent).  

The extreme value for Jasper County indicates that there could be issues with 

the PREVIEW drought data at the US county level, underscores the uncertainty 

introduced when drought is included in the USDRI.  McCormick County has the 

lowest drought exposure in South Carolina, at 8.94 percent. 
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3.5.5 Sea level rise exposure 

Sea level rise exposure for the USDRI was calculated using the procedure 

outlined in section 3.4.1, which utilizes Surging Seas data for 48 US states and 

CReSIS data for Alaska and Hawaii.  Sea level rise exposure in the US exists in 

all states with a coastline.  Exposure to sea level rise, among the states affected 

by the hazard, has a mean of .95 percent and a standard deviation of 1.68 

percent.  The highest sea-level rise exposure occurs in Louisiana, with 19.31 

percent of the state’s population exposed to a 1 meter rise.  

In South Carolina, all coastal counties show exposure to a sea level rise of 

1 meter.  Of the counties exposed, the mean exposure is 2.71 percent and the 

standard deviation is 3.85.  Charleston County has the highest exposure to sea 

level rise, with 12.85 percent of the county’s population exposed to a 1 meter 

increase.    

 

3.5.6 Comparing hazard exposures 

The final calculation of the exposure component for the USDRI mirrors 

that of the WRI (Figure 3.3).  Overall, 16.39 percent of the US population is 

exposed to hazards on an annual basis, according to the USDRI exposure 

calculation (Table 3.2).  For South Carolina, annual exposure is 17.43 percent.  

In both cases, drought accounts for the majority of exposure.   

Table 3.2 details the percent of the US and South Carolina population 

exposed annually and to each hazard.  The domination of the exposure 

component by drought, both at the state and county levels, is evident.  When 
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drought is removed, no hazard dominates at the state level, while tropical 

cyclones become the dominant hazard at the county level.  This underscores the 

more diverse and extensive hazard geography found at the US scale as 

compared to the SC county scale.   

Drought accounts for over 60 percent of total hazard exposure in 49 of the 

50 US states when given full weight in the exposure component, and over 90 

percent of exposure in 30 states. Even with a weight of half, drought still 

accounts for over 60 percent of exposure in 45 of 50 states and over 90 percent 

of exposure in 27 of 50 states.  In some states that have little exposure to other 

hazards in the index, drought accounts for well over 99 percent of exposure.  

This pattern repeats itself when exposure is examined at the county level in 

South Carolina.  In SC, 18 of 46 counties can attribute over 90 percent of their 

weighted exposure to drought, while 42 of 46 counties have over 60 percent of 

their exposure due to drought.   

               Table 3.2: Annual hazard exposure (USDRI calculation) 

  Percent of Population Exposed Annually 

Hazard United States South Carolina 

Cyclone 1.68 3.72 

Earthquake 1.51 < .01 

Flood 0.11 < .01 

Drought 12.5 13.05 

Sea level rise 0.59 0.66 

Total 16.39 17.43 
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Another interesting aspect of the contribution of each hazard is the relative 

lack of exposure to flooding at the state and county level.  This is somewhat 

counterintuitive and in contrast to the losses that flooding actually causes in the 

US.  In 2012, flooding accounted for nearly 60% of the monetary loss and 13% of 

the fatalities due to natural hazards in the US.  For the period 1960-2012, 

flooding ranks as the second costliest hazard in the US, behind only tropical 

storms (HVRI 2014).  A 2011 study of social vulnerability to hazards in the 

Southeast US used the percent of land found in the Federal Emergency 

Management Agency’s Special Hazard Flood Area zones as a metric for 

exposure, finding that at the state level it ranged from 8 percent in Virginia to 48 

percent Louisiana (Emrich and Cutter, 2011).  It would seem as if the exposure 

data does not account for the physical exposure to flooding that it should.  This is 

likely a result of two factors concerning the calculation of flood exposure.  First, 

the relatively small window of time (12 years) over which the flood exposure is 

calculated does not lend itself to a complete profile of the flood hazard.  More 

importantly, PREVIEW flood data comes from the Dartmouth Flood Observatory, 

which catalogs large flood events captured through remote sensing.  Thus as 

calculated, the flood exposure surface ignores a multitude of smaller scale 

flooding events, which are a frequent occurrence in the US.  This shows the need 

for careful consideration of the hazards included and the exposure calculation 

method for risk indexes that include natural hazards.  

To explore the relationship between percent exposure of individual 

hazards and the overall exposure component, multiple linear regression was 
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conducted on the exposure component utilizing the Statistical Package for the 

Social Sciences (SPSS) software package (Table 3.3).  In different runs of the 

regression, exposure and exposure with no drought were used as dependent 

variables, with the individual hazards as independent variables at both the state.  

Changes in variables that have an effect on susceptibility show as strong 

standardized beta coefficients (β).  For the US, changes in drought (β = .805, sig 

= .000) have the most influence on exposure, followed by cyclones (β = .423, sig 

= .000).  Flooding (β = .026, sig = .000) has little influence on the overall 

component.  When drought is removed, changes in cyclone exposure (β = .603, 

sig = .000) have the most influence on US exposure, followed closely by 

earthquakes (β = .526, sig = .000) and sea level rise (β = .453, sig = .000).  The 

pattern is much the same at the SC county level, as drought (β = .829, sig = 

.000) has the most influence on exposure.  When drought is removed, the 

cyclones have the largest influence (β = .868, sig = .000), which makes sense for 

a state with a large stretch of Atlantic coastline.   

Table 3.3: Beta coefficients (β) for exposure linear regression    
 

  United States South Carolina 

Independent 
Variable Exposure 

Exposure (No 
Drought) Exposure 

Exposure (No 
Drought) 

Cyclones .423** .603** .512** .868** 

Earthquakes .369** .526** .004** .006** 

Flooding .026** .037** .006** .007** 

Drought .805   .829**   

Sea Level 
Rise 

.318** .453** .105** .209** 

(*significant  at .05; **significant at .01) 
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3.6 The geography of exposure 

  The exposure component for the US shows its highest values in the 

Southeast and along the West Coast, with apparently lower exposure found 

along the Rocky Mountains and in parts of the Midwest (Figure 3.5). Overall state 

exposure for the US has a mean of 14.84 percent, with a standard deviation of 

4.57.  An independent samples t-test determined that mean state exposure was 

not significantly different than the WRI mean exposure of 14.73 (sig. = .937). 

State exposure ranges from a low of 7.25 percent in Alaska to 30.7 percent in 

Wyoming.  Wyoming’s high exposure value is an unexpected result, and is driven 

entirely by the state’s drought exposure.  This underscores the influence that 

drought has on both the WRI and USDRI, as Wyoming has no exposure to three 

of the five hazards used in the compilation, and only very minor exposure to 

earthquakes.  Although Wyoming has the largest percentage of its population 

exposed to hazards, California has the highest total population exposed, as its 

25.99 percent exposure equates to almost 9.9 million people in the state exposed 

to hazards annually.  Alaska has the lowest exposure in the US, at 7.25 percent 

of its population.   

 South Carolina exhibits large variations in exposure, with many counties 

having high exposure along the coast and in the southern part of the state 

(Figure 3.6).  Mean exposure for counties in the state is 18.18 percent, with a 

standard deviation of 8.36.  This mean is significantly different than both the WRI 

mean (sig. = .024) and the USDRI mean (sig = .015).  Exposure for the state’s 

counties ranges from 4.67 percent in McCormick County to 55.3 percent in 



www.manaraa.com

 

54 
 

Jasper County, near the southern tip of the state.  Like Wyoming in the US 

analysis, the high exposure value for this county is due to the large influence of 

 

      Figure 3.5: US state exposure to hazards (percent)   
      Data mapped using quantiles 
 

 

                Figure 3.6: South Carolina county exposure to hazards (percent) 
   Data mapped using quantiles 
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drought exposure.  Charleston County has the highest population exposed 

annually, as its 29.48 percent exposure equates to 103,937 people.   

 

3.6.1 Excluding drought from the exposure component 

An alternate view of the hazards component of the USDRI is found by 

excluding drought from the exposure formula.  For the reasons previously 

discussed in this chapter, it appears somewhat problematic to include drought in 

the USDRI.  In a more developed country such as the US, drought represents 

more of an economic hazard and less of a physical one; the USDRI is an index 

based on physical exposure.  This is not to underestimate the importance of 

drought as a hazard. In 2012, a total of 26 drought events – including a persistent 

drought in the US Midwest that caused billions of dollars – occurred globally.  

These droughts had far-reaching impacts, from famine in Somalia to rises in crop 

prices of, in some case, over 25 percent (MunichRe 2013). 

Removing drought from the exposure component resulted in a much 

different pattern of exposure, both in the US (Figure 3.7) and in South Carolina 

(Figure 3.8).  For the US, no drought in the component greatly decreased overall 

exposure from 13.22 to 3.9 percent.  The largest drops in exposure at the state 

level were in the Midwest and Rocky Mountains.  Wyoming’s exposure went from 

30.7 percent to less than one percent.  Relatively speaking, the highest exposure 

values without drought are found on the West Coast and east of the Mississippi, 

which makes sense with knowledge of the remaining four hazards in the index.  

The mean exposure with no drought is 2.39 percent, with a standard deviation of 
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3.2.  California has the highest revised exposure figure at 12.1 percent, while 

numerous states have less than one percent.  South Carolina’s exposure with no 

 

       Figure 3.7: US state exposure to hazards, drought excluded  

 

 

      Figure 3.8: SC county exposure to hazards, drought excluded  
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drought also greatly decreased to 4.41 percent.  Removing drought increases the 

influence of cyclones on the component, shifting the relatively higher exposure 

values into the eastern part of the state and along the coast.  Mean county 

exposure in the state without the influence of drought is 3.62, with a standard 

deviation of 4.93.  

 

3.6.2 Exploratory spatial data analysis of exposure 

Exploratory data analysis helps in the recognition of patterns and 

relationships, as well as data description (Tukey 1977; Good 1983).  However, 

exploratory data analysis is not particularly geared to determining spatial trends 

in the data.  One method of examining data spatially is through exploratory 

spatial data analysis, which focuses on discovering spatial patterns and 

relationships.  In general, exploratory spatial analysis can describe how data is 

arranged spatially, discover spatial associations (clustering), and ascertain 

spatial outliers (Anselin 1996).  For this research, data was spatially analyzed 

using Anselin Local Moran’s I (ALMI), which locates spatial clusters and outliers, 

and the Getis-Ord Gi* statistic, which determines spatial hotspots.   

 The oft used Moran’s I statistic measures spatial autocorrelation, or the 

extent of dependency among spatial observations (Moran 1948).   Moran’s I can 

be calculated for a set of spatial data, with values for the statistics ranging from 1 

to -1.  Moran’s I values closer to -1 represent dispersed (non-clustered) 

phenomena and values closer to 1 represent clustered phenomena.  Applying 
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Moran’s I to the results of the analysis in this dataset can help determine if there 

are overall aspects of the data that warrant further investigation.   

One drawback of using Moran’s I is that it only gives insight into the whole 

dataset, not its individual observations.  Calculating Anselin Local Moran’s I for a 

dataset helps gain further insight, as this statistic shows the contribution of each 

observation to a dataset.  In particular, ALMI identifies the location of statistically 

significant clusters as well as outliers in a spatially referenced dataset (Anselin 

1995).   

Another method of exploratory spatial data analysis is through the use of 

Getis-Ord Gi* (Gi*) hotspot analysis.  Like ALMI, Gi* shows the location of 

statistically significant hotspots of high or low values in a spatial dataset.  Gi* also 

analyzes a feature and its neighbors in order to ensure that a statistically 

significant hotspot exists (Getis and Ord 1992).   

As a first step in the spatial analysis of exposure, the Moran’s I statistic 

was calculated for the exposure component as well as the exposure component 

with no drought.  Note that for this calculation, and all spatial statistical 

calculations that follow in the work, Alaska and Hawaii were not included 

because they lack spatial contiguity with the rest of the US.  For exposure, the 

Moran’s I value is -.01, with a p-value of .37, and a z-score of -.71.  Based on this 

result, the null hypothesis that the distribution of exposure is random cannot be 

rejected.  When drought is removed from the exposure calculation, the result is a 

Moran’s I of .23, with a p-value of .00 and a z-score of 2.62.  The positive value 

of Moran’s I along with the significant p-value (at alpha = .05) indicates a degree 
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of clustering in the exposure score with no drought at the state level.  For 

individual hazards in the US, only cyclones (Moran’s I = .54, p = .00, z = 6.24) 

show significant clustering, while no hazards display significant dispersion.    

 The trend in spatial dependency found at the state level in the US is 

mirrored at the county level in South Carolina.  The Moran’s I statistic for the 

exposure component for SC counties is .12, with a p-value of .07 and a z-score 

of 1.83.  This result again means failing to reject the null hypothesis that the 

exposure values are random.  When drought is removed, Moran’s I for the 

exposure component is .49, with a p-value of .00 and a z-score of 6.18.  Thus 

without drought, the null hypothesis can be rejected at an alpha level of .05; more 

clustering is seen in the exposure component than would be expected.  For 

individual hazards in SC, cyclones (Moran’s I = .51, p-value = .000, z-score = 

6.47) and sea level rise (Moran’s I = .20, p-value = .000, z-score = 4.08) show 

significant clustering, with no hazards displaying dispersion. 

 To further investigate the spatial nature of exposure, both Anselin’s Local 

Moran’s I (ALMI) and Getis-Ord Gi* (Gi*) were calculated for the exposure 

component, with and without drought as part of the model (Figures 3.9 - 3.12).  

For the US, ALMI analysis located a statistically significant cluster of high 

exposure values, centered on Georgia and Florida (Figure 3.9), meaning that 

these states and their neighbors all exhibit anomalously high exposure.  The 

ALMI analysis also identified Wyoming and Louisiana as a high exposure spatial 

outliers, meaning that these states are surrounded by states that have relatively 

low exposure.  Wyoming’s high drought exposure value accounts for its status an 
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outlier, while Louisiana has high exposure to drought, sea level rise, and 

cyclones.  Without drought, ALMI analysis shows a much different spatial pattern 

for exposure in the US.  The Southeast no longer shows as a high exposure 

cluster, but the Northeast has one, centered on Massachusetts, Rhode Island, 

and Connecticut.  Wyoming and Louisiana no longer show as a high outliers – 

Wyoming in particular has a very low exposure score without drought.  Instead, 

 

Figure 3.9: Anselin Local Moran’s I for exposure (left) and exposure with no drought 

 

Figure 3.10: Getis-Ord Gi* for exposure (left) and exposure with no drought 
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California, based on earthquake exposure, has a statistically significant higher 

exposure value when compared to its neighbors.   

 The Getis-Ord Gi* analysis (Figure 3.10) for exposure shows an area of 

high exposure in the Southeast US, with significant values found in Georgia and 

Florida.  Gi* also identifies an area of low exposure in the Midwest, centered on 

Iowa, Illinois, and Wisconsin.   When drought is removed from the exposure 

component, the area of low exposure in the Midwest remains but shifts west - 

centered on centered on Nebraska, South Dakota, Colorado, Wyoming, and New 

Mexico – and expands.  Significant hotspots with no drought are found in the 

South, centered on Louisiana and Mississippi, and in the Northeast, centered on 

Massachusetts and Connecticut.     

 ALMI analysis for South Carolina identifies a significant cluster of high 

exposure in the southern part of the state (Figure 3.11), centered on Jasper and 

Beaufort counties.  Jasper has the highest exposure value for the state at 55.3 

percent, while Beaufort has the fourth highest at 25.7 percent.  Another area of 

high exposure is centered on Georgetown County in the eastern part of the state. 

Removing drought from the exposure component leaves SC with a single 

significant cluster of high exposure that runs along the coast from Charleston 

County northeast to Horry County.  This cluster is due mainly to exposure to 

tropical cyclones. 

Gi* analysis shows much the same pattern for exposure with drought 

included, highlighting Beaufort, Jasper and Hampton counties as one significant 

hotspot, with another that includes Georgetown and Horry counties. (Figure 
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3.12).  Without drought, Gi* underscores a much different pattern in the state.  

The analysis shows a hotspot including eight counties along or near the SC 

coast, running from Charleston to Horry County.  Six of these counties are 

significant at the 95% level.  Additionally, a large cluster of nine low exposure 

counties emerges in the northwest part of the state, centered on Laurens and 

Greenwood counties.   Removing drought, which is more of an areal hazard than 

any other included in the index, brings out spatial differences in exposure that are 

masked when it is included.  It is clear, for both the US and SC, that drought has 

a large influence on the exposure component and the USDRI writ large.   

 

Figure 3.11: Anselin Local Moran’s I for exposure (left) and exposure with no drought 

 

 

Figure 3.12: Getis-Ord Gi* for exposure (left) and exposure with no drought 



www.manaraa.com

 

63 
 

3.7 Summary and conclusions 

 This chapter has detailed the overall construction of the USDRI as well as 

its exposure component.  The USDRI is a downscaled version of the World Risk 

Index, thus its construction and variable choices mimic the WRI whenever 

possible.  Overall, like the WRI, the USDRI calculates risk as the product of 

exposure and vulnerability for a given place. 

 The USDRI exposure component consists of the same five hazards – 

tropical cyclones, floods, earthquakes, drought, and sea level rise – found in the 

WRI.  The component is calculated in the same manner as the WRI, which gives 

only half weight to drought and sea level rise.  Once exposure is determined for 

individual hazards, the scores are added together.  The resulting number 

assigned to the exposure component for a state or county represents the number 

of people in that geographic area exposed annually to the suite of hazards in the 

model.   

 At the US level, state exposure values are highest in the Southeast and 

along the West Coast.  Central areas of the country have generally lower scores, 

but there are also some states with higher exposure scores here, including 

Wyoming, the state with the highest exposure score.  For SC counties there is a 

large range of exposure, with many of the most exposed counties occurring in 

the southern part of the state and along the coast.  Spatial analysis showed 

much the same patterns.  At the US level, clusters of high exposure were noted 

along the Gulf Coast, while a cluster of lower vulnerability (according to ALMI 
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analysis) occurs in the Midwest.  For South Carolina, high exposure clusters are 

found along the coast.   

 The large influence of drought on the overall exposure component is 

evident, as at both the state and county level approximately 75% of the exposure 

is due to drought.  Thus drought, which has caused no recorded deaths or 

injuries in the US since 1960, has an undue influence on an index that describes 

risk to hazards using human exposure.  For this reason, the exposure component 

was calculated without drought.  This drastically changed the nature and pattern 

of exposure at the state and county level.  Overall exposure scores were much 

lower at both scales.  For the US, removing drought from the component 

definitely established areas west of the Mississippi River (especially the Atlantic 

and Gulf Coasts) as well as the West Coast as areas of high exposure.  For 

South Carolina, counties along the coast showed the highest values for 

exposure, and exposure tends to decrease in the state from the coast inland.  

Spatial analysis of exposure clusters and hotspots confirms these observations 

at both scales.   
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CHAPTER 4: CONSTRUCTING THE USDRI - VULNERABILITY 

 

4.1 Overview 

The complementary component to exposure in the WRI is vulnerability.  

The concept of vulnerability used in the WRI generally conforms to the 2009 

UNISDR definition, which describes vulnerability as “the characteristics and 

circumstances of a community, system or asset that make it susceptible to the 

damaging effects of a hazard.”  While many contemporary conceptualizations of 

vulnerability include an entity’s exposure, this definition separates it (UNISDR 

2009).  The vulnerability component of the WRI attempts to capture this broad 

concept of vulnerability by using three individually calculated subcomponents: 

susceptibility, coping capacity, and adaptive capacity (Figure 4.1).   

This initial effort to downscale the WRI attempts to use the same 

indicators, where feasible, as the original WRI.  In some cases, many due to data 

availability at smaller scale, the indicators could not be directly replicated, so 

close proxies were utilized. 

 

4.2 The susceptibility subcomponent 

Susceptibility refers to the predisposition of infrastructure, humans, and the 

environment to be affected by the impacts of a hazard.  Susceptibility can be 



www.manaraa.com

 

66 
 

physical or societal; the latter refers to the intrinsic conditions within a society that 

make it possible that, once impacted, the society will suffer great harm (IPCC 

2012).   

 

4.2.1 Variables 

To capture the susceptibility within a society, the WRI uses five 

categories: public infrastructure, housing conditions, nutrition, poverty and 

dependencies, and economic capacity and income distribution (Figure 4.2).  The 

WRI variables used to assess susceptibility (as well as adaptive capacity and 

coping capacity) were selected through participatory methods, and vetted by 

experts and practitioners in order to determine their relevance to the concept.  

Additionally, advice from those surveyed resulted in the weights applied to each 

of the groupings of variables in the sub-indices (Birkmann 2011).  One category, 

housing conditions, was not included in the final calculation of the WRI 

 

    Figure 4.1: Vulnerability in the WRI 
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susceptibility component, as suitable, uniform data to assess housing at the 

global level does not currently exist.  For this reason, housing conditions were 

also omitted from this initial attempt to downscale to the USDRI, although data 

exist at the subnational level.   

 

4.2.2 Data 

The indicators used in the USDRI susceptibility component come from 

four different data sources (Table 4.1).  The primary data source is the US 

Census Bureau’s American Community Survey (ACS) 2012 data release. The 

ACS samples approximately 2.5 percent of the US population each year.  This 

produces a sufficient sample size for areas of higher population, but not for 

sparsely populated areas (ACS, 2009).  To account for the entire US population, 

Table 4.1: Indicators for USDRI Susceptibility 

 

Susceptibility Indicator (N=6) Source Supporting Literature

Public Infrastructre
Households without bathrooms US Census American Community Survey (2008-2012) Brooks et al. 2005

Nutrition
Access to healthy foods Robert Wood Johnson Foundation County Health 

Rankings and Roadmaps
Ahern et al. (2011); Von Grebmer et al. 
(2010); UNSCN (2010)

Poverty and Dependencies
Dependency Ratio US Census American Community Survey (2008-2012) Cutter et al. (2003); Schneiderbauer 

(2007)

Poverty level US Census American Community Survey (2008-2012) Ravallion et al. (2008); UNDP (2007); 
World Bank (2008)

Economic Capacity and Income Distribution
GDP per capita US Department of Commerce Bureau of Economic 

Analysis
Peduzzi et al. (2009); UNDP (2004); 
Schneiderbauer (2007); Ash et al. 
(2013)

GINI coefficient US Census American Community Survey (2008-2012) Gini (1921); Anand and Segal (2008); 
Norris et al. (2008)
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the USDRI utilizes the ACS five-year (2008-2012) estimate, which is its most 

comprehensive estimate.   

 Data for the nutrition component is taken from the Robert Wood Johnson 

Foundation County Health Rankings and Roadmaps.  This dataset, available 

online at http://www.countyhealthrankings.org/, is a collaboration between the 

Robert Wood Johnson Foundation and the University of Wisconsin Population 

Health Institute.  The dataset contains both rankings and raw data that look at 

various factors for each US county used to assess overall health. The rankings 

themselves are calculated within a state, meaning that comparing ranks across 

counties for different states is not possible.  However, the USDRI utilizes only the 

raw data used to compile the rankings, which allows for comparison between 

states and counties.   

 Finally, data for Gross Domestic Product (GDP) comes from two different 

sources.  State level GDP is drawn from the US State Department Bureau of 

Economic Analysis.  This GDP data is an inflation-adjusted measure of state 

production, based on average US prices for goods produced within a state (BEA, 

2014).  The county GDP data is estimated by taking state GDP and multiplying 

that by the percentage of the state’s employees that each county has (Ash et al. 

2013).   

 

4.2.3 Procedures 

Once all variables were collected, the susceptibility subcomponent was 

compiled using the weights assigned to the original WRI components (Figure 
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Figure 4.2: Makeup of the WRI (left) and USDRI susceptibility components 
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4.2).  The USDRI variable weights mirror those of the WRI, except for 

households without bathrooms, which carries 100 percent of the public 

infrastructure category compared to 50 percent in the WRI.   

For comparative purposes, all of the individual variables were rescaled.  

Indicators expressed as percentages were divided by 100.  Non-scaled variables 

were normalized using a Min-Max rescaling technique, using the following 

equation: 

 

Xi, 0 to 1 = Xi – Xmin / Xmax – Xmin 

  

Rescaling results in variable values that are comparable.  The 

normalization resulted in variables on a scale of 0 to 1, with the lowest variable 

value assigned a value of 0, the highest 1, and all others scaled in between.  The 

end result for each component is a mix of unscaled (those that were already 

expressed as percentages) and scaled variables.  This is an appropriate 

technique when some variables are already expressed as percentages (Tate 

2013).  For susceptibility, higher values equate to higher susceptibility.  For the 

purposes of data presentation and comparison to the WRI, the final 

subcomponent score is multiplied by 100. Theoretically, scores for all three of the 

USDRI vulnerability subcomponents have a minimum possible value of 0 and 

maximum possible value of 100.   
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4.2.4 Analysis 

In the WRI, the US (Figure 4.3) has a value of 16.67 for its susceptibility 

component.  In the re-analysis, when state scores for susceptibility are weighted 

for population and scaled to the national level, the result is 21.8.   The difference 

in these values is likely accounted for by the use of different data sources for 

each index.  In addition, the degree of normalization used in each index is 

different, based on the different sample sizes (n = 51 for the USDRI, n = 173 for 

the WRI).  For the smaller sample size of the USDRI, individual points for any 

data rescaled using the min-max technique could differ greatly from their actual 

value.  South Carolina (Figure 4.4) has a susceptibility composite score of 23.26 

 

Figure 4.3: US state susceptibility.  Data mapped using quantiles. 
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at the state level, which is 42nd among US states (Washington, D.C. included) – 

ranking it among the most susceptible.  

 On a state by state basis, mean susceptibility scores are 21.67 (standard 

deviation 1.61), ranging from 19.5 in Maryland (least susceptible) to 25.22 in 

Mississippi (most susceptible).  The mean state susceptibility score is 

significantly different than the WRI mean susceptibility of 31.35 (sig. = .000).  An 

area of high susceptibility scores occurs across southern areas of the US, while 

the Mid-Atlantic States and New England exhibit lower susceptibility scores.   

South Carolina counties have a mean susceptibility of 21.44 (standard 

deviation 1.75). This is significantly different than WRI mean susceptibility (sig. = 

.000), but not USDRI susceptibility (sig. = 501).  Susceptibility scores for SC 

counties range from 17.8 in Richland (least) to 24.68 in Allendale (most).  There 

seems to be a distinct urban / rural pattern to lower and higher susceptibility, 

respectively.  The three largest urban areas of the state – Charleston along the 

 

                   Figure 4.4: SC county susceptibility.  Data mapped using quantiles. 
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coast, Columbia in the Midlands, and Greenville-Spartanburg in the upstate – are 

in areas that score in the lowest 20 percent of susceptibility.   

A linear regression model was run, with susceptibility as the dependent 

variable and its components as explanatory variables (Table 4.2).  Changes in 

variables that have an effect on susceptibility show as strong standardized beta 

coefficients (β).  For US states, changes in GDP (standardized β = .458, sig = 

.000) and dependency ratio (standardized β = .372, sig = .000) had the strongest 

influence on susceptibility.  At the SC county level, susceptibility was most 

influenced by changes in GDP (standardized β = .580, sig = .000), dependency 

ratio (standardized β = .400, sig = .00), as well as percent of those with income 

below the poverty level (standardized β = .445, sig = .000). 

Spatial analysis of susceptibility using Moran’s I shows that for the US 

(Moran’s I = .31, z-score = 3.70, p-value = .000), statistically significant clustering 

Table 4.2: Relationship between susceptibility and variables used to construct it 

  US States SC Counties 

Variable  Pearson's R β Pearson's R β 
Households 
without 
bathrooms 

-.096 .107** .439** .065** 

Access to 
healthy foods 

.697** .215** -.121 .266** 

Dependency 
ratio 

.750** .372** .482** .400** 

Income below 
poverty level 

.685** .274** .729** .445** 

GDP per 
capita 

.847** .458** .670** .580'' 

GINI index .027** .191** .471** .209** 

(*significant at .05; **significant at .01) 
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exists while it does not for SC (Moran’s I = .11, z-score = 1.47, p-value = .144).  

Further investigation using ALMI and Gi* highlight the spatial distribution of 

susceptibility.  For the US, ALMI analysis identified a significant cluster of high 

susceptibility in the southern US, centered on Arkansas, Mississippi, and 

Alabama (Figure 4.5).  ALMI also identified areas of lower susceptibility in the 

mid-Atlantic (Maryland) and the Northeast (Massachusetts).  Gi* analysis also 

shows a cluster of high susceptibility in the southern US that includes nine states 

in the southern half of the US, seven of which have significant values (Figure 

 

 
 
Figure 4.5: Spatial analysis of susceptibility using Anselin Local Moran’s I. 

 

  
 
Figure 4.6: Spatial analysis of susceptibility using Getis-Ord Gi*. 
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4.6).  Additionally, Gi* identifies an areas of low susceptibility in the mid-Atlantic 

and another in the Northeast.   

For South Carolina, ALMI identified a statistically significant cluster of low 

susceptibility in the central part of the state centered on Richland and Lexington 

counties, as well as highlighting Horry County as having low susceptibility in an 

area of higher susceptibility.  ALMI also shows a significant cluster of high 

susceptibility in the southwest part of the state, centered on Allendale and 

Bamberg counties.  Gi* analysis identified the low susceptibility cluster in the 

center of the state as well as a high susceptibility cluster in the southwest part of 

the state that includes four counties.     

 

4.3 The coping capacity subcomponent 

The WRI coping capacity component is designed to assess the ability of 

nations (states or counties) to cope with the immediate effects of disasters.  The 

WRI specifies five components that determine the ability to cope: government 

and authorities, disaster preparation and early warning, medical services, social 

networks, and poverty and dependencies (Figure 4.7).  There is insufficient 

global data available at present on disaster preparation and early warning and 

social networks categories.  As a result, they are not included in the initial version 

of the WRI.  They can be included in later versions, as better data for these 

categories exists either globally or sub-nationally.  For example, the number of 

Storm Ready communities in the US could serve as an indicator for disaster 
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preparation and early warning, while participation in Citizen Corps programs or 

access to the internet could provide insight into social networks.   

 

4.3.1 Data 

The indicators for the coping capacity subcomponent come from four different 

sources (Table 4.3).  The previously discussed ACS provides data for primary 

care physicians and health insurance.  The government and authorities metric is 

the number of governments and special districts per 10,000 people, with higher 

numbers representing more political fragmentation (Cutter et al. 2010).  State 

level data on political fragmentation was obtained by using weighted averages of 

the county-level data.  Finally, the data for the hospital beds indicator is drawn 

from two different sources published by the US Census Bureau.  State hospital 

bed information comes from the 2012 US Statistical Abstract 

(https://www.census.gov/compendia/statab/).  Data for county hospital beds 

  Table 4.3: Indicators for USDRI Coping Capacity 

 

Coping Capacity Indicator (N=4) Source Supporting Literature

Government and Authorities

Political Fragmentation Hazards and Vulnerability 
Research Institute

Murphy (2007); Ansell et al. (2010); 
Lambsdorff (2008); Norris et al. (2008)

Medical Services

Primary care physicians per 
10000

US Census American Community 
Survey (2008-2012)

IDEA (2005); Norris et al. (2008)

Hospital beds per 10000 US Census Statistical Abstract 
(state); US Census County and 
City Data Book (county)

McKee (2004); Auf de Heide and
Scanlon (2007)

Material / Economic Coverage

Health Insurance Coverage US Census American Community 
Survey (2008-2012)

IDEA (2005)
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comes from the City and County Data Book. 

(http://www.census.gov/statab/www/ccdb.html).  

 

4.3.2 Procedures 

The coping capacity subcomponent followed the WRI.   All of the variables were 

normalized on a scale from 0 to 1 and weighted according to WRI formula.  For 

the government and authorities category the WRI had two variables weighted at 

50 percent each, while the USDRI utilized only political fragmentation, weighted 

at 100 percent of the category.  Once compiled, higher coping capacity scores 

indicate increased ability to cope.  In order to fit into the overall vulnerability 

model, where higher scores equate to higher vulnerability, the inverse of the 

coping capacity scores were used (score subtracted from 100).  Thus the score 

used in the final calculation describes lack of ability to cope, with higher scores 

meaning less ability.   

 

4.3.2 Analysis 

The US scores a 48.48 for lack of coping capacity in the WRI while in the 

reformulation the USDRI score is 47.79.  South Carolina’s coping capacity value 

is 39.18.  This ranks the state 15th among US states, within the top third in terms 

of ability to cope with disasters. 

The mean coping score for the states is 43.24, with a standard deviation 

of 8.56.  This is significantly different than the WRI lack of coping mean of 69.79 

(sig. = .000).  Scores range from a low of 34.58 in Mississippi to a high of 78.61 
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Figure 4.7: Makeup of the WRI (left) and USDRI coping capacity components 
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 in Illinois.  In general, low scores for the component, indicating better ability to 

cope, are found in the Southeast US, while many western states display less 

 

       Figure 4.8: US state lack of coping capacity (Data mapped using  
       quantiles) 
 

 

       Figure 4.9: SC county lack of coping capacity (Data mapped using               
       quantiles) 
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coping capacity (Figure 4.8).  South Carolina’s (Figure 4.9) county mean lack of  

coping capacity is 43.62, with a standard deviation of 5.75.  This is significantly 

different than the WRI lack of coping mean (sig = .000), but not the USDRI lack 

of coping mean (sig = .501).  Spartanburg County has the lowest capacity to 

cope, scoring 56.66, while Bamberg scores best among SC counties (29.98).  

There is no readily apparent pattern to high lack of coping scores in the state.  

The SC coastal counties appear do have generally lower scores, indicating better 

coping capacity.  Examination of coping capacity at the SC county scale 

produces some counter-intuitive results, as some counties with apparent low 

ability to cope – such as Allendale – scoring well.  This is likely a result of low 

populations and minimal governmental structures allowing the certain counties to 

score much better than anticipated.  This phenomena repeats itself to varying 

degrees in the other vulnerability subcomponents, and could be the result of 

attempting to use variables vetted at the global scale for a sub-national index.   

Multiple regression between coping capacity (Table 4.4) and its 

components shows that at the US state scale, changes in political fragmentation  

(standardized β = .934, sig = .000) have the most influence on coping capacity.  

At the SC county scale political fragmentation (standardized β = .693, sig = .000), 

hospital beds (standardized β = .742, sig = .000), and physicians (standardized β 

= .524, sig = .000) all influence on coping capacity.  

Spatial data exploration of the coping capacity component using Moran’s I 

shows no statistically significant results, indication that coping capacity displays a 
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random pattern at both the state (Moran’s I = .07, z-score = 1.61, p-value = .271)  

and SC county level (Moran’s I = .00, z-score = .24, p-value = .812).  Further 

analysis using ALMI and Gi* did reveal some spatial patterns in coping capacity.  

For the states, ALMI showed both Illinois to be a statistically significant outlier, 

meaning the state had high lack of coping capacity when compared with its 

neighbors (Figure 4.10).  On the other end of the spectrum, ALMI identified 

Virginia also as an outlier, with more coping capacity compared to neighboring 

states.  Gi* analysis confirmed the low lack of coping scores in the mid-Atlantic 

(Figure 4.11), again identifying Virginia as having a statistically low score.  

Additionally, Gi* highlighted an area of high lack of coping in Southwest US.   

In South Carolina, ALMI identified a significant cluster of poor coping 

capacity centered on Greenville County in the northwest part of the state, and 

also identified Greenwood and Union counties as having good coping capacity in 

an area with relatively poor capacity.  Gi* also identified Greenville as the center 

Table 4.4: Relationship between coping capacity and variables used to construct it 
 

  US States SC Counties 

Variable  Pearson's R β Pearson's R β 
Political 
fragmentation 

.946** .934** .277 .693** 

Physicians per 
10000 

.116 .183** .419** .742** 

Hospital beds per 
10000 

.388** .228** .797** .524** 

Health insurance .125 .049** -.039 .054** 

 (*significant at .05; **significant at .01) 
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of a low coping capacity cluster, while showing a cluster of better coping capacity 

centered on Colleton County in the southern part of the state. 

 

 

4.4 The adaptive capacity subcomponent 

The adaptive capacity component is designed to measure the ability to 

adapt to the negative consequences of future disasters.  The WRI captures 

adaptive capacity using indicators in five categories: education and research, 

gender equity, environmental status / ecosystem protection, adaptation 

strategies, and investment (Figure 4.12).  However, there are no consistent 

 
 
Figure 4.10: Spatial analysis of coping capacity using Anselin Local Moran’s I. 

 

  
 
Figure 4.11: Spatial analysis of coping capacity using Getis-Ord Gi*. 
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global indicators of adaptation strategies, so the set is excluded from the WRI 

computation.  

 

4.4.1 Data 

The adaptive capacity indicators utilized by the USDRI come from six 

different data sources (Table 4.5).  The ACS provides the data for educational 

attainment as well as gender parity.  Literacy rate data comes from the National 

Center for Educational Statistics, which conducted a 2003 survey of over 16,000 

households in order to estimate basic prose skills 

(http://nces.ed.gov/naal/estimates/Overview.aspx).  Under the category of  

environmental protection, the WRI utilizes the Environmental Performance Index 

database compiled by the Yale Center for Environmental Law and Policy.  These 

data are not available at the subnational level; however, data are available for the 

three sub-elements.  Drinking water safety data comes from the aforementioned 

Robert Wood Johnson Foundation County Health Rankings and Roadmaps.  For 

the biodiversity and habitat protection indicator, the USDRI uses two datasets – 

percent protected areas and percent wetlands (National Landcover Dataset), by 

county and state and percent of harvest cropland (Census of Agriculture, 2007).  

Under the investment component, life expectancy is derived from data at the 

Institute for Health Metrics and Evaluation, a health research center.  Data on 

health expenditure comes from two different sources.  State level data comes 

from the Dartmouth Atlas of Healthcare as compiled by the Henry J. Kaiser 

foundation (http://kff.org/history-and-mission/).  County health expenditure 
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   Figure 4.12: Makeup of the WRI (left) and USDRI adaptive capacity components 
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information comes from the Robert Wood Johnson Foundation County Health 

Rankings and Roadmaps.   

 

4.4.2 Procedures 

The USDRI adaptive capacity subcomponent was compiled using the 

same weights as the same WRI subcomponent, with indicator weights distributed 

equally in the categories and the four categories also weighted equally, with each 

contributing 25 percent to the overall component score.  Normalization and 

scaling was accomplished in the same manner as in both the susceptibility and 

coping capacity components.  As with coping capacity, the final scores were 

subtracted from 100 so that higher scores are worse, indicating a lack of ability to 

adapt. 

Table 4.5: Indicators for USDRI Adaptive Capacity 

 

Adaptive Capacity Indicator (N=8) Source Supporting Literature

Education and Research
Literacy Rate National Center for Educational Statistics Cutter et al. (2003); UNESCO (2006)

Educational Attainment (percent 
over age 25 with at least a high 
school diploma)

US Census American Community Survey (2008-2012) Cummings et al. (2005); Cutter et al. 
(2003); Norris et al. (2008)

Gender Equity
Ratio of females to males in 
managament positions

US Census American Community Survey (2008-2012) NRC (2006b)

Environmental Status / Ecosystem Protection
Drinking Water Safety Robert Wood Johnson Foundation County Health 

Rankings and Roadmaps
Emerson et al. (2010)

Biodiversity and Habitat 
Protection (wetlands and 
protected areas)

Hazards and Vulnerability Research Institute; National 
Landcover Dataset 2006 (wetlands); Protected areas 
database of US 2012 (protected areas)

Brody et al. (2012); Beatley and 
Newman (2013)

Agricultural management 
(harvested area in cropland)

Hazards and Vulnerability Research Institute; USDA 
Census of Agriculture (2007)

UNDESA (2007); Barthel and Isendahl 
(2013)

Investment
Life expectancy at birth Institute for Health Metrics 2010 WHO (2008); UNDP (2010c)

Healthcare expenditure Countyhealthrankings.org (county data); Henry J. Kaiser 
Foundation (state data)

Cutter et al. (2003); Brooks et al. 
(2005)
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Calculation of the adaptive capacity subcomponent of the USDRI yields a 

population weighted overall value of 39.84 for the US, higher than the WRI 

adaptive rating, which is 32.55.  This could be a result of the fact that six of the 

eight USDRI adaptive capacity indicators, while similar, were different than their 

WRI counterparts.  Another possible explanation for the large disparity in values 

is the normalization process.  Within the USDRI, n = 51, while the WRI n = 173.  

The US indicators in the WRI likely scored well for adaptive capacity compared to 

the rest of the world, so the normalized scores for the US would be generally 

lower.  In the USDRI the smaller sample size meant US states that might have 

scored well compared to other countries in the world would fare poorly as a result 

of the subnational normalization process.  For example, Illinois’ adaptive capacity 

score of 44.32 would rank it a modest 70th in the world, but places it in the bottom 

third of US states with a rank of 34.  South Carolina’s adaptive capacity score is 

40.72, ranking it 28th among US states.   

 

4.4.3 Analysis 

The mean state score for lack of adaptive capacity is 39.11, with a 

standard deviation of 6.74.  This is significantly different than the WRI lack of 

coping mean of 47.34 (sig. = .000).  Scores range from 24.05 in Alaska (most 

adaptive) to 49.55 in Iowa (least adaptive).  Areas of lower adaptability are found 

in the central part of the US, while both the east and west coasts show relatively 

more capacity to adapt (Figure 4.13).   South Carolina’s county mean lack of 
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adaptive capacity is 40.12, with a standard deviation of 7.32.  This is significantly  

different than the WRI mean (sig. = .000), but not the USDRI mean (sig. = .800).  

 
   
  Figure 4.13: US state lack of adaptive capacity (Data mapped using  
  quantiles) 
 

 
   
      Figure 4.14: SC county lack of adaptive capacity (Data mapped  
      using quantiles) 
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Bamberg County has the lowest ability to adapt, scoring 53.57, while Marion 

scores best with a 25.81.  In general, lower adaptive capacities are found in the  

northwest part of the state, while better adaptive abilities are seen in counties 

along or near the coast (Figure 4.14).   

Multiple regression (Table 4.6) shows that, at the state level, changes in 

gender parity and management (standardized β = .635, sig = .000) and health 

expenditure (standardized β = .369, sig = .000) have the most influence on 

adaptive capacity.  For SC counties, the same was true, with changes in gender 

parity (standardized β = .887, sig = .000) and health care expenditure 

(standardized β = .412, sig = .000) having the most influence. 

Table 4.6 Relationship between adaptive capacity and variables used to construct it 

 

  US States SC Counties 

Variable  Pearson's R β Pearson's R β 

Literacy rate -.117 .081** -.178 .085** 

Educational 
attainment 

.172 .061** -.048 .089** 

Gender parity in 
management 

.875** .635** .890** .887** 

Drinking water 
safety 

.306* .055** .075 .114** 

Biodiversity and 
habitat protection 

.340* .132** .397** .102** 

Agricultural 
management 

.460** .206** -.024 .089** 

Life expectancy .247 .112** -.144 .106** 

Health expenditure .702** .369** .484** .412** 

 (*significant at .05; **significant at .01)



www.manaraa.com

 

89 
 

 Examination of the adaptive capacity component at the county level for SC 

shows no significant clustering or dispersion (Moran’s I = .08, z-score = 1.18, p-

value = .240).  For the US, Moran’s I indicates some clustering of adaptive 

capacity scores (Moran’s I =.40, z-score 4.55, p-value = .000).  For the US, ALMI 

identifies a cluster of 3 states – South Dakota, Nebraska, and Iowa - with high  

lack of adaptive capacity in the Midwest US, while outlining two clusters of better 

adaptive capacity in the mid-Atlantic and Northeast (Figure 4.15).  Gi* shows 

much the same pattern, identifying a large area of higher lack of adaptive  

 

 
 
Figure 4.15: Spatial analysis of adaptive capacity using Anselin Local Moran’s I. 

 

  
 
Figure 4.16: Spatial analysis of adaptive capacity using Getis-Ord Gi*. 
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capacity in the central US, which includes six states with significant values 

(Figure 4.16).  Gi* also identified areas of better adaptive capacity in the mid-  

Atlantic and Northeast.  

For South Carolina, ALMI identifies Bamberg County as a high-low outlier, 

showing high lack of adaptive capacity while its neighbors have low values for 

the component.  ALMI also identifies an area of low (better) lack of adaptive 

capacity found in the southeastern part of the state includes four counties.  Gi* 

identified much the same pattern, specifying Saluda County as a high lack of 

adaptive capacity hotspot and also outlining an area of better adaptive capacity 

that includes eight counties in the eastern part of the state.   

 

4.5 Compiling the vulnerability component 

Once the subcomponents were completed, the overall vulnerability 

component was compiled for both states and South Carolina counties.  Each 

subcomponent (coping, adaptive capacity, susceptibility) was given a weight of 

.3333 and added together to determine the overall vulnerability score.  

Vulnerability scores range from 0 to 1, with values closer to 1 indicating 

vulnerability.  The overall USDRI vulnerability score for the US, based on 

population-weighted state values, is 34.47, compared to the WRI calculated 

score of 32.57.   

 For states, the mean vulnerability score was 34.67, with a standard 

deviation of 4.23.  State mean vulnerability is significantly different than the WRI 

mean of 49.50 (sig. = .000).  Alaska has the lowest vulnerability at 26.82, while  
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 Figure 4.17: US state vulnerability (Data mapped using quantiles) 
 

 
    
        Figure 4.18: SC county vulnerability (Data mapped using  
        quantiles) 
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Illinois has the highest (48.02).   Visual examination of vulnerability shows that 

the highest component scores are in the Midwest and West US.  Areas of low  

vulnerability are found along the eastern seaboard, especially in the Mid-Atlantic 

and New England (Figure 4.17).   

Mean vulnerability for South Carolina counties is 35.06, with a standard 

deviation of 3.00.  This is significantly different than the WRI mean (sig. = .000), 

but not the USDRI mean (sig. = .609).  Higher vulnerability counties are found in 

the northwest part of the state, while many of the counties with lower vulnerability 

scores are found along the coast (Figure 4.18).  The lowest county vulnerability 

component score in SC is Allendale County, which has a score of 29.63.  

Spartanburg County has the highest vulnerability in the state, with a component 

score of 40.84. South Carolina’s overall vulnerability score of 34.4 ranks it 22nd 

among US states.   

 

4.6 Alternate weighting of the vulnerability component 

While the USDRI uses an expert-informed weighting scheme that mirrors 

the WRI, it is useful to consider alternate weighting schemes.  Alternate schemes 

have the potential to provide greater insight into the vulnerability component and 

risk overall, as well as facilitate better understanding and ease of use of the 

index. Moreover, testing the robustness of results with alternate aggregation 

methods is one way, lacking the ability to achieve a perfect aggregation, of 

testing the sensitivity of the index (Saisana et al. 2005).    The alternate weighting 

scheme utilized in this study was to equally weight all of the variables, which 
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removes the subjective aspect of the WRI’s expert-informed weighting scheme.  

On the downside, equal weighting of variables when subcomponents of an index 

have an unequal number of indicator variables – as is the case with both the WRI 

and USDRI – means that variables in subcomponents with more variables 

ultimately carry less weight.  

The equally weighted subcomponent scores produced a slightly different 

vulnerability score at the state level, and a more marked difference at the county 

scale.  In each case, the overall vulnerability score increased. For states, mean 

vulnerability increased from 34.67 using expert weights to 35.19 using equal 

weights (difference was statistically significant using a two sample t-test t = -2.62, 

p-value = 0.012).  More importantly, equal weighting also shifted the pattern of 

vulnerability among states somewhat, with many states in the Southeast seeing 

an increase (Figure 4.19). Illinois had the largest decrease in vulnerability (-4.00) 

with equal weighting, while Alaska had the largest increase (+2.39).  For South 

Carolina, mean county vulnerability increased to 36.24 under equal weighting, 

compared to a mean of 35.06 using expert weights, the difference in means also 

significant (t = -5.31, p-value = .000).  All but eight of the state’s 46 counties saw 

an increase in vulnerability using equal variable weights (Figure 4.20).  Greenville 

County showed the best improvement (-2.22), while Marion had the largest 

increase (+4.44) in vulnerability. The overall results of equally weighting the 

variables are consistent with a 2005 study that found using different weighting 

schemes in vulnerability indexes caused slightly different vulnerability and  
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subcomponent scores, but did not significantly change the observed pattern of 

vulnerability (Emrich, 2005). 

 

4.7 Exploratory data analysis of vulnerability 

Table 4.7 shows correlations between vulnerability, both expert and equal 

weighted, and its subcomponents.  Susceptibility shows the weakest correlation 

with vulnerability at the county level under both weighting methods, and at the 

state level when expert weighted.  When equal weights are applied to the 

Figure 4.19: Comparison in the pattern of USDRI vulnerability expert weighted (left)  
and equal weighted (Data mapped using quantiles). 
 

Figure 4.20: Comparison in the pattern of USDRI vulnerability for South Carolina 
counties expert weighted (left) and equal weighted (Data mapped using quantiles) 
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variables, susceptibility has a higher correlation with vulnerability.  For the US, 

coping capacity shows the strongest linear relationship with vulnerability under 

the expert weighting scheme while adaptive capacity has the strongest 

relationship under an equal weighting scheme.  The opposite is true at the SC 

county level.   

A multiple regression model was created in order to determine the effect 

that the three subcomponents had on vulnerability.  Vulnerability was used as the 

dependent variable, while its three subcomponents were input as the explanatory 

variables (Table 4.8).  Analysis of the standardized beta coefficients shows how 

changes in the subcomponents impact overall vulnerability.  At the US level, 

Table 4.8: Standardized beta coefficients from regression of vulnerability (dependent) 
with its subcomponents (explanatory) 

(*significant at .05; **significant at .01) 

Subcomponent Vulnerability
Vulnerability (Equal 

Weight) Vulnerability
Vulnerability (Equal 

Weight)

Susceptibility .127** .191** .194** .247**

Coping Capacity .674** .572** .637** .757**

Adaptive Capacity .531** .562** .812** .607**

United States South Carolina

Table 4.7: Correlation coefficients between vulnerability and its subcomponents  
 

 
(*significant  at .05; **significant at .01)

Subcomponent Vulnerability
Vulnerability (Equal 

Weight) Vulnerability
Vulnerability (Equal 

Weight)

Susceptibility .447** .614** -.067 .226

Coping Capacity .792** .409** .606** .753**

Adaptive Capacity .771** .817** .782** .627**

United States South Carolina
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changes in coping capacity have the most effect on vulnerability (β = .674, sig = 

.000).  When equal weights are applied to the variables, changes in coping 

capacity (β = .572, sig. = .000) and adaptive capacity (β = .562, sig = .000) have 

almost the same effect on vulnerability.  At the SC county level, changes in 

adaptive capacity (β = .812. sig = .000) have the most influence on vulnerability, 

while coping capacity (β = .757, sig = .000) has the most influence under equal 

weighting.   

Using Moran’s I to analyze the spatial nature of vulnerability produces 

different results at the state and county levels.  At the state level, Moran’s I 

indicates some degree of clustering and spatial autocorrelation for both the 

expert-weighted (Moran’s I = .22, z-score = 2.87, p-value = .004) and equal 

weighted (Moran’s I = .35, z-score = 4.36, p-value = .000) compilations of 

vulnerability.  At the SC county scale, Moran’s I notes no distinct autocorrelation 

or clustering of vulnerability with either weighting scheme.    

ALMI analysis for vulnerability at the state level identified a significant 

cluster of high vulnerability in the Midwest centered on Illinois, while a cluster of 

low vulnerability is centered on Virginia / Maryland (Figure 4.21).  Equal 

weighting of vulnerability variables showed much the same pattern, with the 

addition of a cluster of low vulnerability centered on Massachusetts, New 

Hampshire, and Vermont.  Gi* analysis (Figure 4.22) showed a significant 

hotspot of high vulnerability in the Midwest that includes four states, and a cold 

spot of low vulnerability centered on Virginia and Maryland in the mid-Atlantic.  
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When vulnerability indicators are equally weighted, the Midwest hotspot expands  

to nine states (five at the significant level) stretching from Indiana to Arizona.  

Equal weighting also shows an additional cold spot of vulnerability that includes 

five states in New England.  These results suggest that, no matter the weighting 

scheme, the USDRI concept of vulnerability tends to cluster in space at the state 

level.  

 

Figure 4.21: Spatial analysis of expert weighted (left) and equal weighted US 
vulnerability using ALMI  

 

Figure 4.22: Spatial analysis of expert weighted (left) and equal weighted US 
vulnerability using Getis-Ord Gi* 
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 Spatial analysis of vulnerability for South Carolina indicates clusters of 

both high and low vulnerability (Figures 4.23 and 4.24).  ALMI identifies the 

cluster of high vulnerability centered on Greenville using expert weights, and also 

shows Richland and Union counties as having significantly low vulnerability 

compared to their neighbors.  ALMI also shows three coastal counties – Colleton, 

Charleston, and Georgetown – as a cluster of low vulnerability.  When equal  

 

  Figure 4.23: Spatial analysis of expert weighted (left) and equal weighted SC county      
  vulnerability using ALMI  

 

 

   Figure 4.24: Spatial analysis of expert weighted (left) and equal weighted SC county      
   vulnerability using Getis-Ord Gi*  
 



www.manaraa.com

 

99 
 

weights are applied to the variables, ALMI shows much the same spatial pattern, 

although Greenville no longer shows as a cluster of high vulnerability, and 

Greenwood shows up as an additional high outlier.  For expert weighted 

vulnerability, Gi* identifies a significant hotspot of high vulnerability centered on  

Greenville County, as well as a cold spot of low vulnerability involving five coastal 

counties..  Equal weighting the variables moves the high vulnerability hotspot to 

Saluda County, and shows the same area of low vulnerability along the coast.   

 

4.8 Comparing the USDRI to the Social Vulnerability Index 

Comparing the USDRI vulnerability component to an established 

vulnerability index is useful in assessing the picture of vulnerability the USDRI 

paints.  One such index is the Social Vulnerability Index (SoVI).  SoVI is an 

established composite index that measures social vulnerability to environmental 

hazards using 30 socioeconomic variables.  These variables are compiled into 

dimensions using principal components analysis in order produce a vulnerability 

score at the geography of interest (Cutter 2003). As SoVI and the USDRI use 

different variables and are compiled differently the two are not directly 

comparable.  However, spatial statistics allows comparisons of the patterns of 

vulnerability each index represents.   

SoVI is compiled at the county level for the US; no SoVI scores exist at 

the state level.  To facilitate comparison with the USDRI, SoVI county scores 

were weighted by population and aggregated into state-level scores. These 

state-level aggregations, as well as the county level SoVI data, were compared 
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to their USDRI counterparts.  Pearson’s correlation coefficient showed no linear 

relationship between the measures of vulnerability at the state (R = -0.1, p-value 

= .485) or county (R = -0.10, p-value = .505) scales.  Comparing the Moran’s I 

values of the vulnerability scores provides little further insight.  While the USDRI 

vulnerability component showed some moderate clustering and spatial 

autocorrelation at the state level, SoVI (Moran’s I = -.04, z-score = .20, p-value = 

.843) does not.  At the county level, where the USDRI vulnerability showed no  

spatial autocorrelation, SoVI shows at slight tendency to cluster, though not at a 

significant level (Moran’s I = .15, z-score = 1.92, p-value = .055). 

Further spatial analysis shows both similarities and differences in the  

pattern of vulnerability shown by the two methods.  For the US states (Figure 

4.25), ALMI showed a significant area of high vulnerability in the Midwest and 

areas of lower vulnerability in the Mid-Atlantic and Northeast. For SoVI, ALMI did 

Figure 4.25: Spatial analysis of SoVI at the state level using ALMI (left) and Getis-Ord 
Gi* 
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not detect any cluster of significantly high vulnerability, but it did find Utah to be a 

low outlier surrounded by high values, implying higher vulnerability in some 

western states. New York and West Virginia show as high outliers for SoVI, 

meaning these states have significantly higher vulnerability than their neighbors.  

Like the USDRI, SoVI also shows significant clusters of lower vulnerability in the 

Northeast.  Gi* analysis for SoVI shows a hotspot of high vulnerability that  

includes Texas and Arkansas, which were not identified as same in USDRI 

vulnerability.  Gi* also indicates some lower vulnerability values in the Northeast, 

with Delaware showing as the center of an area of low vulnerability.   

 At the SC county level, both ALMI and Gi* identified Greenville County as 

the center of an area of high vulnerability in the USDRI, a conclusion that does  

not show up in analysis of SoVI.  Using both methods of spatial analysis on SoVI 

showed vulnerability to be poor in the southern part of SC along the Savannah 

 

Figure 4.26: Spatial analysis of SoVI at the SC county level using ALMI (left) and  
Getis-Ord Gi* 
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River and in the eastern part of the state along the border with North Carolina 

(Figure 4.26).  Similar to its results for USDRI vulnerability, Gi* identified an area 

of lower vulnerability on SC’s coast, centered on Charleston County. 

 The variables found in the compilation of the SoVI express susceptibility, 

so it is also useful to compare the spatial patters of SoVI and the USDRI 

susceptibility component.  In general, the USDRI susceptibility component 

appears more spatially similar to SoVI than the overall vulnerability component.  

For the US, ALMI identified clusters of low vulnerability in the Northeast US for 

both SoVI and susceptibility.  Gi* identified clusters of high SoVI centered on 

Texas and Arkansas; for susceptibility it identified a nine state cluster of high 

susceptibility along the Gulf Coast which includes Texas and Arkansas.   

At the SC county scale SoVI and USDRI susceptibility also display 

similarities. Both methods of spatial analysis identified clusters of low 

susceptibility in central SC, a conclusion supported by ALMI analysis of SoVI.  In 

addition, both methods found high susceptibility / social vulnerability in southeast 

SC, centered on Barnwell and Allendale counties.  

 

4.9 Summary and conclusions 

 This chapter has detailed the construction of the vulnerability component 

for the USDRI and its three sub-indices: susceptibility, coping capacity, and 

adaptive capacity.  The USDRI vulnerability component consists of 18 variables, 

compared to the 22 variables found in the WRI, but close approximations of 
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those found in the WRI were substituted.  Other variables were close 

approximations of those found in the WRI.   

 The USDRI vulnerability component, examined using two different 

weighting schemes, shows areas of generally higher vulnerability in the Midwest 

and western US, with the East Coast states having lower vulnerability.  Spatial 

analysis concurs with this assessment, finding clusters of high vulnerability in the 

Midwest and lower vulnerability in the mid-Atlantic and New England.  For South 

Carolina, the USDRI generally found lower vulnerability scores in counties along 

the state’s coast, and higher vulnerabilities in the northwest part of the state, an 

assessment supported by spatial analysis. 

The vulnerability scores for states and counties were compared to scores 

from the Social Vulnerability Index, an established measure of socio-economic 

vulnerability.  No correlation exists between the two at either scale of 

examination, but they do exhibit some similar spatial patterns at the state level, 

with spatial analysis for SoVI identifying higher vulnerability clusters in the central 

US, and lower vulnerability clusters along the US east coast.  For South Carolina, 

spatial analysis different between the two measures of vulnerability; analysis of 

SoVI showed some clustering of vulnerability in the southeast part of the state, a 

conclusion not reached by analysis of USDRI vulnerability.  Comparing SoVI to 

only the susceptibility component reveals that the two exhibit similar spatial 

patterns at both the state and county scale. 

With the analysis of the exposure and vulnerability components of the 

USDRI complete, they can be compiled into the overall USDRI.  The next chapter 



www.manaraa.com

 

104 
 

details the overall results of the USDRI model by exploring spatial patterns of risk 

and the relationships of USDRI determined risk with other metrics.   
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CHAPTER 5: ASSESSING RISK WITH THE UNITED STATES DISASTER 

RISK INDEX 

 

5.1 Overview 

 Though the spatial and temporal aspects of hazards in the US are well 

documented, economic losses from hazards continue to increase.  Per capita 

economic losses in the US increased from 1960 to 2010, even when population 

growth and wealth are taken into consideration (Gall et al. 2011).  Although 

human losses (deaths and injuries) have declined in the same time period, the 

rise in economic loss highlights the need for better understanding of disaster risk 

in order to increase awareness and better mitigate against its effects.   

 This chapter presents the results of the USDRI as proof of concept for the 

downscaling of the WRI.  By combining exposure and vulnerability into a single 

metric, the USDRI acknowledges that a comprehensive assessment of risk goes 

well beyond direct damage caused by the hazard being examined, extending to 

the social aspects of a population that leave it more vulnerable to physical or 

economic harm.  
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5.2 Compiling the USDRI 

The previous chapters discussed in detail the construction of the exposure 

and vulnerability components of the USDRI.  Once these are calculated, the 

assessment of risk using the USDRI is relatively straightforward.  The scores for 

the exposure and vulnerability components are multiplied together, yielding an 

overall score for risk that ranges from 0 to 1.  For display purposes, this score is 

multiplied by 100, with a possible range of overall risk from 0 (no risk) to 100 

(extreme risk).  Although 100 is the highest possible risk score, overall risk 

scores are typically under 40 as a result of the multiplication used in the final 

aggregation.  If either exposure (possible) or vulnerability (unlikely) is zero, then 

the overall risk score is also zero, as absent either component, there is no risk.  

 

5.2.1 Geographic distribution of risk at the state scale 

Figure 5.1 shows the geographic distribution of USDRI risk for the United 

States.  The Southeast US coastal states from Louisiana to North Carolina, with 

the exception of Mississippi, fall into the top 20 percent of riskiest states.  This 

high risk area is influenced by exposure to tropical cyclones.  Another area of 

high risk is along the West Coast, which is influenced by earthquake exposure, 

especially California.  Areas of lower risk are found in the Great Lakes region as 

well as the Northeast.  The influence of drought is also seen on the pattern of 

risk.  For example, Mississippi has high cyclone exposure like the rest of the 

Southeast, but has one of the lower drought scores, which reduces its overall risk 

score compared to neighboring states.  Conversely, Wyoming – a state with little 
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exposure to four of the five hazards in the model – has a very high risk score due 

to the high drought exposure found in the state.  While Wyoming is certainly 

sensitive to drought, it is under essentially the same climate influences as its 

southern neighbor, Colorado.  Colorado has a much lower risk evaluation as a 

result of a low drought exposure score, as well as a higher population base than 

Wyoming.     

According to the WRI, the US risk score is 3.99.  In the reformulation, the 

USDRI produces a value of 5.99.  This is likely due to the larger sample size of 

the WRI as well as its use of different variables.  The mean risk score for states 

is 5.14, with a standard deviation of 1.68.  This is significantly different than the 

 

Figure 5.1: USDRI Risk (Data mapped using quantiles) 
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WRI mean risk score of 7.40 (sig. = .002).  The lowest risk state is Alaska at 

1.95, while California has the highest score (10.61).  Alaska’s risk score would 

place it 166th of the 173 countries included in the WRI, in the lowest 10 percent of 

countries based on disaster risk, between Bahrain and the United Arab Emirates.  

California’s score places it in the top 20% of most risk WRI countries, ranking it 

33rd between Cape Verde and Indonesia.   Table 5.1 details the 10 lowest and 

highest USDRI risk scores for US states.   

With the large influence of drought exposure on the USDRI model, it is 

worthwhile to examine the model without drought included in order to fully assess 

its usefulness in assessing physical risk to hazards in the US.  Figure 5.2 details 

risk without drought included in the exposure component.  Areas of high risk are 

still evident in the Southeast and on the West Coast.  However, the Midwest and 

Southwest display much lower risk, while the Northeast displays increased risk 

as a result of the much lower risk in other areas.  Without drought, the mean 

state risk is .87, with a standard deviation of 1.19.  Population weighted risk 

   Table 5.1: USDRI highest and lowest risk states 

Most Risk Least Risk 

State Risk Score State Risk Score 

1.   California  10.61  41.  South Dakota  4.13 

2.   Wyoming  10.11  42.  Michigan  4.12 

3.   Louisiana  9.20  43.  Massachusetts   4.00 

4.   Florida  7.93  44.  Wisconsin  3.95 

5.   Alabama  7.88  45.  Nevada  3.89 

6.   Georgia  7.37  46.  Colorado  3.86 

7.   North Carolina   6.76  47.  Rhode Island  3.71 

8.   Washington  6.46  48.  Maryland  3.64 

9.   Kansas  6.25  49.  Hawaii  3.61 

10. South Carolina  5.93  50.  Alaska  1.95 
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decreases to 1.44 from 5.99.  The least risky state is New Mexico, at less than 

.01 percent, while Louisiana is the highest risk state, at 5.24 percent.  Table 5.2 

 

       Figure 5.2: USDRI Risk without drought in the exposure component (Data  
       mapped using quantiles) 
 
Table 5.2: USDRI (no drought) highest and lowest risk states 

Most Risk Least Risk 

State Risk Score State Risk Score 

1.  Louisiana  5.24  41.  North Dakota   <.01 

2.  California  4.94  42.  Nebraska  <.01 

3.  Florida  3.34  Oklahoma  <.01 

4.  Connecticut  2.36  Minnesota  <.01 

5.  Massachusetts   2.03  South Dakota  <.01 

6.  Rhode Island  1.81  Wyoming  <.01 

7.  Alabama  1.64  Montana   <.01 

8.  South Carolina  1.50  Kansas  <.01 

9.  New York  1.41  Colorado  <.01 

10.  North Carolina   1.24  New Mexico  <.01 
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shows the most and least risky states without drought in the model.   

 

5.2.1 Geographic distribution of risk at the SC county scale 

South Carolina has an overall USDRI risk score of 5.93.  Figure 5.3 shows 

USDRI risk calculated for South Carolina counties.  Areas of higher risk are 

generally seen in counties along the coast as well as in a group of five counties 

in the northwest part of the state, while lower risk exists in the central part of the 

state north to the state’s border with North Carolina.  Mean risk for the state is 

6.35, with a standard deviation of 3.00.  This is not significantly different from the 

WRI risk mean (sig. = .180), but is different than the USDRI risk mean (sig. = 

.015).  The highest risk county is Jasper at 21.44 (Table 5.4), while the lowest 

risk is McCormick, at 1.71. Jasper County’s exposure, due mainly to drought, 

greatly influences its risk score, as detailed in the previous chapter. McCormick 

County’s risk score would place it 168th of 173 countries in the WRI, between 

Iceland and Kiribati.  Jasper’s poor risk score would actually rank it 4th highest in 

the world, between the Philippines and Bangladesh.  It is hard to fathom that 

Jasper’s disaster risk is actually this high; this score is likely a result of the heavy 

influence of drought on the county score.  Table 5.3 details the top and bottom 

ten SC counties in terms of risk.  As with state level USDRI risk, omitting drought 

from the model generates a much different county pattern of risk (Figure 5.4), 

with higher risk areas found along the coast, and less risky in the west and 

northwest areas of the state.  This pattern is explained in Table 3.2, as without 

drought, tropical cyclone and sea-level rise dominate exposure for the state.  
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Overall mean risk without drought is 1.29, with a standard deviation of 1.69.  With 

this version of risk, Georgetown County has the highest risk in the state at 7.27 

(Table 5.4).  Edgefield has the lowest, at < .01.   

 

           Figure 5.3: USDRI Risk for South Carolina counties (Data mapped using  
           quantiles) 
 
 
Table 5.3: USDRI highest and lowest risk South Carolina counties 
 

Most Risk Least Risk 

County Risk Score County Risk Score 

1.  Jasper   21.44  37. Williamsburg   4.81 

2.  Marion   13.84  38. York   4.57 

3.  Georgetown   11.03  39. Lancaster   4.50 

4.  Charleston   8.55  40. Fairfield  4.20 

5.  Beaufort   8.47  41. Dillon  4.19 

6.  Hampton   7.84  42. Lexington  4.17 

7.  Abbeville   7.47  43. Berkeley  3.81 

8.  Barnwell   7.33  44. Marlboro  3.78 

9.  Orangeburg   7.32  45. Richland  3.40 

10.  Spartanburg   7.24  46. McCormick  1.71 
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5.3 Visualizing risk by individual hazard 

 One of the strong points of the USDRI model is that the components are 

modular and can be assessed individually.  A state or county may have a poor 

 

         Figure 5.4: USDRI Risk for SC counties without drought in the exposure 
         component (Data mapped using quantiles) 

 

Table 5.4: USDRI (no drought) highest and lowest risk South Carolina counties  

Most Risk Least Risk 

County Risk Score County Risk Score 

1.  Georgetown    7.26  37. Saluda    0.07 

2.  Charleston    5.46  38. Oconee    0.05 

3.  Horry    4.94  39. Laurens    0.03 

4.  Marion   4.54  40. Aiken    0.03 

5.  Beaufort    3.97  41. Anderson    0.01 

6.  Jasper    2.06  42. Greenwood    0.01 

7.  Dorchester    1.91  43. Greenville    < .01 

8.  Clarendon    1.68  44. Abbeville    < .01 

9.  Lee    1.68  45. Pickens   < .01 

10.  Sumter    1.54  46. Edgefield    < .01 
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overall vulnerability score; closer examination of the vulnerability sub-

components can suggest strategies to reduce vulnerability.  The same is true for 

the exposure portion of the equation.  The WRI accommodates any hazard for 

which a geo-referenced exposure surface can be calculated.  This gives the 

model great utility, as it allows for current or hypothetical (e.g. changes in hazard 

exposure as a result of climate change) information in the exposure component.   

 The USDRI in its current form utilizes five hazards, but it is a relatively 

simple process to calculate risk for any subset the hazards by modifying the 

exposure component to include the hazard(s) of interest.  Figure 5.5 shows the 

distribution of risk – calculated using the full vulnerability component but only the 

exposure for each individual hazard - for each of the hazards included in the 

USDRI.  This flexibility lets practitioners focus their efforts on the hazards that 

impact their area of interest the most, or those that the area of interest is least 

prepared to handle.   

 

5.4 Exploratory data analysis of risk 

Correlations between risk and the components and subcomponents of the 

USDRI show an interesting trend (Table 5.5) in that risk is highly correlated with 

exposure, but only weakly so with vulnerability.  All of the subcomponents of 

vulnerability show a similar weaker correlation with risk.   At the county level 

(Table 5.6), exposure is even more closely correlated with risk, while vulnerability 
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Figure 5.5: USDRI Risk for (clockwise from top left) 1) All USDRI hazards; 2) cyclones; 
3) drought; 4) sea level rise; 5) floods; and 6) earthquakes (Data mapped using 
quantiles) 
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and its subcomponents have no appreciable correlation with risk.  At both the 

county and state level, when drought is removed from the model, risk is even 

more highly correlated (R > .99) with exposure.   

Table 5.7 details the correlation coefficients among the WRI and its 

subcomponents.  Of note is the strong correlation between the WRI and the 

exposure component, as well as weaker correlations between risk and the 

vulnerability subcomponents.  This mirrors the overall pattern in correlations 

noted at both scales of the USDRI.  Additionally, the WRI subcomponents of 

vulnerability are more closely correlated with the vulnerability component than 

their USDRI counterparts.  Thus, the general trend as the WRI model is 

downscaled is for the correlation between risk and exposure to increase, while 

the correlation between risk and vulnerability decreases.  This suggests the need 

Table 5.5: Correlation matrix for state risk and the components of the US state USDRI 

   Risk  Exposure  Vulnerability  Susceptibility Coping  Adaptive 

Risk  1        

Exposure  .948**  1       

Vulnerability  .304*  .002  1      

Susceptibility  .232  .108  .447**  1     

Coping  .209  ‐.042  .792**  .007  1   

Adaptive  .252  .029  .771**  .585**  .233  1 

 (*significant at .05; **significant at .01) 

Table 5.6: Correlation matrix for county risk and the components of the SC county 
USDRI  

   Risk  Exposure  Vulnerability Susceptibility Coping  Adaptive 

Risk  1        

Exposure  .978**  1       

Vulnerability  .076  ‐.114  1      

Susceptibility  .038  .059  ‐.067  1     

Coping  .124  0.01  .606**  ‐.114  1   

Adaptive  ‐0.01  ‐.162  .782**  ‐.227  .012  1 

(*significant at .05; **significant at .01) 
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to put variables in local context in order to better portray vulnerability as well as 

the need for further refinement of the model in terms of how it combines 

exposure and vulnerability.   

Spatial analysis of USDRI risk underscores how heavily it is influenced by 

the exposure component.  Analysis of USDRI risk with Moran’s I shows no 

spatial autocorrelation with (Moran’s I = .04, z-score .70, p-value .483) drought 

included in exposure.  Without drought, overall risk does show some 

autocorrelation (Moran’s I = .17, z-score = 2.26, p-value = .024), albeit weak.  

ALMI and Gi* both highlight the large spatial differences drought brings to the 

exposure component.  With drought, both ALMI (Figure 5.6) and Gi* (Figure 5.7) 

show an area of high risk in the Southeast US, with both Florida and Georgia 

showing as significant. When drought is removed, the two diverge somewhat on 

where significant areas of high risk exist in the US. The only significant finding 

using ALMI to examine risk is that California is a high outlier, meaning it has high 

risk compared to states that border it. Gi* identifies a significant area of low risk 

that includes seven states from Missouri to Utah, while indicating higher risk 

(though not significant) in New England and along the Gulf Coast.   

Table 5.7: Correlation matrix for country risk and the components of the WRI  

   Risk  Exposure  Vulnerability Susceptibility Coping  Adaptive 

Risk  1        

Exposure  .920**  1       

Vulnerability  .428**  .090  1      

Susceptibility  .037**  0.057  .942**  1     

Coping  .468**  .152*  .946**  .806**  1   

Adaptive  .362**  .032  .947**  .843**  .878**  1 

 (*significant at .05; **significant at .01) 
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When the ALMI and Gi* maps are compared to the same maps for exposure, it is 

clear that the spatial arrangement of risk and exposure are similar.  ALMI shows 

high risk and exposure in the Southeast, and identifies Wyoming as a high outlier 

for each metric.  Without drought in the index, ALMI shows California as a high 

outlier for both exposure and risk (see Figure 3.9 for comparison to Figure 5.6).  

Gi* also shows very similar spatial patterns between risk and exposure.   

 

Figure 5.6: Spatial analysis of risk at the state level using ALMI for risk (left) and risk   
without drought 
 

 

Figure 5.7: Spatial analysis of risk at the state level using Getis-Ord Gi*for risk (left) and 
risk without drought 
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Not surprisingly, the spatial patterns of risk at the SC county level also 

closely mirror the spatial patterns that exposure exhibits.  With drought in the 

exposure component, Moran’s I analysis shows no significant spatial 

autocorrelation (Moran’s I = .11, z-score = 1.75, p-value = .080).  However, 

without drought Moran’s indicates significant clustering (Moran’s I = .45, z-score 

= 5.67, p-value = .000).  ALMI analysis for risk identifies a high risk cluster 

containing two counties (Jasper and Beaufort) in the southern part of SC, as well 

as identifying Georgetown County as the center of a high risk cluster in the 

eastern part of SC (Figure 5.8).  Without drought in the index, ALMI shows a 

cluster of four high risk counties along the SC coast.  In both cases, this is 

exactly the same spatial clustering noted by ALMI for exposure (see Figure 3.11).  

Gi* identifies the same significant cluster of high risk / exposure in the southern 

part of the state, adding Hampton as part of the cluster (Figure 5.9).  Like ALMI, 

Gi* also indicates a cluster of high risk in the eastern part of the state, though not 

at a significant level.  Without drought, the Gi* profile for both exposure and risk 

is nearly identical, with a large area of high exposure / risk along the SC coast 

and an area of significantly low exposure / risk in the northwest part of the state 

(see Figure 3.12 for comparison with Figure 5.6).  The spatial pattern of risk in 

SC is in contrast to that of vulnerability, which notes the opposite pattern – high 

vulnerability in the northeast part of the state and low vulnerability along the 
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coast (see Figure 3.28).  As with the state level, the spatial pattern of risk at the 

county level is heavily influenced by exposure and less so by vulnerability.   

 

5.5 Evaluating disaster risk against known losses 

 One method to assess the efficacy of the WRI/USDRI is to evaluate how 

well disaster risk relates to known human (see Gall et al. 2007) and economic 

(Schmidtlein et al. 2010) losses.  There are a variety of web-based sources of 

hazard loss data.  These include the Emergency Events Database (EM-DAT), 

 

Figure 5.8: Spatial analysis of risk at the county level using ALMI for risk (left) and risk 
without drought 

 

 

Figure 5.9: Spatial analysis of risk at the county level using Getis-Ord Gi* for risk (left) 
and risk without drought 
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the Natural Hazards Assessment Network (NATHAN), the National Climatic Data 

Center’s Storm Events Database, and the Hazards and Vulnerability Research 

Institute’s (University of South Carolina) Spatial Hazard Events and Losses 

Database for the United States (SHELDUS).  Of these sources, both Storm 

Events and SHELDUS contain data at the US county level (Gall et al. 2009).  

SHELDUS is more appropriate for use in this study, as it contains losses for 

earthquakes, while Storm Events does not.   

 

5.5.1 USDRI and state / county losses 

 The latest version of SHELDUS contains over 810,000 records of hazard 

loss from 1960 – 2012.  The database includes every hazard loss recorded in 

that timeframe, with the exception of the years 1993-1995, in which only hazards 

that caused at least one fatality or resulted in at least $50,000 in damage are 

recorded. SHELDUS does have some drawbacks that could hinder its 

effectiveness as a metric for evaluating the USDRI.  First, loss data in SHELDUS 

that spans multiple counties is spread over those counties, which means that 

overall losses reflected at the county and even state level could be different than 

actual losses experienced. (HVRI, 2014).  Another drawback of SHELDUS data 

is that single hazards can span multiple hazard categories, which makes 

categorizing losses difficult.  Finally, SHELDUS loss data are estimates, which 

can impact the accuracy of the database (Borden and Cutter 2008).  Despite 

these shortcomings, SHELDUS is the most comprehensive source of hazard loss 
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data available for the US at the county level and the most appropriate for 

evaluating the USDRI.   

 The relationship between USDRI risk (including its components and 

subcomponents) and hazard loss data was explored using correlation and 

ordinary least squares regression.  Losses included those incurred in all hazards 

found in the SHELDUS database, as well as a separate analysis that included on 

losses incurred only in the hazard events found in the USDRI exposure 

component.  Tables 5.7 and 5.8 detail the correlations among the USDRI and 

SHELDUS loss data at the state and county level.  Of note, the USDRI contains 

one exposure variable – sea level rise – that is not accounted for in any loss 

database as it is not currently a loss-causing hazard.  Deleting sea level rise from 

the exposure component does not result in a statistically significant change in 

mean exposure. 

At the state level, there are mainly moderate correlations between USDRI 

risk and both human and economic losses, with the strongest being between risk 

and overall loss (Pearson’s R = .507, significant at the .01 level).  Adjusting the 

monetary losses to include only DRI hazards actually decreases this correlation 

(Pearson’s R = .440, significant at the .01 level).  The opposite is true in terms of 

human losses, where limiting the fatalities and injuries increases the correlation 

with risk.  This pattern repeats itself when exposure is compared to losses.  

Overall, USDRI risk has stronger relationships with monetary losses.   Removing 

drought from the exposure component improves the relationship between both 

USDRI risk and exposure and all of the loss metrics.  Interestingly, the 
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  Table 5.8: Correlation matrix for state risk, exposure, vulnerability, and SHELDUS loss data 
 

             
(*significant  at .05; **significant at .01)
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 Table 5.9: Correlation matrix for SC county risk, exposure, vulnerability, and SHELDUS loss data 
 

             
   (*significant  at .05; **significant at .01) 
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relationship between risk and human losses has a large increase (correlation = 

.630, significant at the .01 level) without drought in the model.   

At the SC county level, risk and losses show no relationship.  Removing 

drought from the model greatly improves the relationship between risk and 

monetary loss.  However, the relationship between risk and human loss remains 

poor.  This is likely the result of the disproportionate influence of large hazards at 

smaller scales.  At this scale, human losses are rare, and the presence of 

extreme events where a small number of events accounts for many losses likely 

skews the results.    

When vulnerability is compared to losses, mainly weak correlations exist.  

The vulnerability component shows no relationship with loss at the state level, 

and only a weak relationship with monetary loss at the county level.  By 

comparison, the Social Vulnerability Index, shows a weak relationship with loss 

at the state level, and a weak negative relationship with loss at the SC county 

level.  Of note, the identical correlation between losses from hazards included in 

the index with and without drought at the county level (Table 5.8) is a result of the 

fact that the drought surface for SC counties was uniform, meaning that its 

removal from the loss data subtracted an equal amount of loss from each county.   

 

5.5.2 WRI and global losses 

 It is also possible to compare components of the WRI to global losses in 

order to see how the relationship between the USDRI and losses compares to 

the same relationship at the global scale.  Loss data at the global scale was 
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obtained from the EM-DAT database (http://www.emdat.be/database), which 

contains data on global disasters from 1900 to the present.  The scope of EM-

DAT data is different than that of SHELDUS data.  While SHELDUS contains 

almost all loss-causing events in the US, EM-DAT is geared toward mortality, 

and contains only events that caused 10 or more fatalities or 100 or more 

injuries.  Data for losses from 1960 – 2012 (the same timeframe used to examine 

losses from SHELDUS against the WRI) was extracted from EM-DAT.  Only 

those losses in the exposure component of the WRI were included.  As with 

SHELDUS data, EM-DAT does not include potential hazards, so there is no loss 

data for sea level rise.  As the WRI does not assess risk for every country, the 

EM-DAT global data was downsized to include only those countries that the WRI 

examined.   Of the 173 countries included in the WRI, 13 did not have any losses 

for WRI hazards in the EM-DAT database.    

Table 5.10 shows the correlations between WRI components and EM-

DAT losses.  Published WRI exposure data does not include exposure without 

drought, so that correlation is not included.  The results of the correlation analysis 

are similar to that of the USDRI.  The overall WRI risk score shows no correlation 

with losses, and the exposure component of the WRI shows only a weak 

correlation with monetary losses.  The vulnerability component of the WRI shows 

no correlation with monetary loss, and a weak correlation with injuries and 

fatalities.  These results suggest that the lack of correlation found in the 

downscaled USDRI (when drought is included) is commensurate with the 

relationship of WRI risk to losses.   
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5.5.3 Predicting Losses 

 Ordinary least squares regression was utilized to further examine the 

statistical relationship between risk and loss.  The results for regression of 

USDRI risk with SHELDUS loss data – which include the same loss categories 

from the correlation analysis - are presented in table 5.11.   The results suggest 

that, at the state level, risk as defined by the USDRI does not predict much of the 

variability in loss.  The best relationship risk has with a dependent loss variable is 

total hazard losses (R2 of .2568).  Surprisingly, risk explains less of the variability 

in losses specific to the hazards in the USDRI exposure component.  When 

drought is removed from the USDRI calculation, the amount of variance in the 

loss data that risk accounts for increases, in all cases.  Without drought, risk 

accounts for just over 40 percent of the variability in overall losses (R2 = .4058) 

and just under 40 percent of the variability in hazards specific to the USDRI 

model (R2 = .3966).   

Table 5.10: Correlation matrix for WRI components and EM-DAT loss data            
 

  
Risk  Exposure  Vulnerability

Monetary 
Loss 

Human Loss 

Risk  1             

Exposure  .920**  1          

Vulnerability  .428**  .090  1       

Monetary 
Loss 

.043  .187*  .037  1    

Human Loss  .023  ‐.004  .150*  .453**  1 

(*significant at .05; **significant at .01) 
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Table 5.11: Regression results for USDRI (state level) components against losses 

  Dependent Variable - US State Losses 

Independent Variable R Squared F p 

Risk 0.2568 16.93 0.0002 

Risk (No Drought) 0.4058 33.47 0 

Exposure 0.1748 10.38 0.0023 

Exposure (No Drought) 0.3568 27.18 0 

Vulnerability 0.0628 3.282 0.0762 

  

  Dependent Variable - US State Losses (DRI Hazards) 

Independent Variable R Squared F p 

Risk 0.194 11.79 0.0012 

Risk (No Drought) 0.3062 21.63 0 

Exposure 0.1337 7.56 0.0083 

Exposure (No Drought) 0.2673 17.88 0.0001 

Vulnerability 0.0429 2.197 0.1447 

  

  Dependent Variable - US State Loss (DRI Hazards - No Drought) 

Independent Variable R Squared F p 

Risk 0.2117 13.16 0.0007 

Risk (No Drought) 0.3436 25.65 0 

Exposure   0.1578 9.814 0.0039 

Exposure (No Drought) 0.303 21.3 0 

Vulnerability 0.0289 1.46 0.2328 

  

  Dependent Variable - US State Fatalities and Injuries 

Independent Variable R Squared F p 

Risk 0.0936 5.059 0.029 

Risk (No Drought) 0.1698 10.02 0.0027 

Exposure 0.0508 2.622 0.1118 

Exposure (No Drought)  0.1556 9.029 0.0042 

Vulnerability 0.0565 2.936 0.0924 

  

  Dependent Variable - US State Fatalities and Injuries (DRI Hazards)

Independent Variable R Squared F p 

Risk 0.194 11.8 0.0012 

Risk (No Drought) 0.3966 32.21 0 

Exposure 0.184 11.05 0.0017 

Exposure (No Drought)  0.4059 33.48 0 

Vulnerability 0.0142 0.7073 0.4044 
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Regression analysis brings out some other interesting trends in the 

USDRI.  For one, in all of the relationships examined, the amount of variability in 

loss explained by the exposure component is nearly equal to and mirrors 

changes in the variability explained by risk.  This underscores the previous 

finding that risk is heavily influenced by exposure in the USDRI calculation.  

Another interesting aspect of the data is that the vulnerability component of the 

USDRI explains virtually none of the variance in any of the loss data.  The best 

R2 for the vulnerability component is .0628, against overall losses.  This 

compares to the aggregated state Social Vulnerability Index (not included in 

Table 5.11), which at its best has an R2 of .0688 against the loss metrics used in 

this study.   

At the SC county level, many of the same trends are noted in the 

regression analysis of USDRI components against losses (Table 5.12).  Overall 

risk shows almost no ability to account for variance in any of the loss metrics, 

with all R2 values close to zero.  With drought removed from the exposure 

component, the amount of variance risk explains in economic losses jumps 

considerably; risk accounts for just over 48 percent of the variance in total losses 

(R2 .4826).  As with the state level analysis, the ability of the exposure 

component to explain variance in loss mirrors risk, and actually is slightly 

stronger, with an R2 of .5034 against overall losses.  Vulnerability performs no 

better explaining variance in loss; its best R2 is .0863.  When county level Social 

Vulnerability (not included in Table 5.12) is regressed against losses, the most 
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Table 5.12: Regression results for USDRI (county level) components against losses 

  Dependent Variable - SC County Losses 

Independent Variable R Squared F p 

Risk 0.0049 0.2168 0.6438 

Risk (No Drought) 0.4826 41.04 0 

Exposure 0.0234 1.055 0.31 

Exposure (No Drought) 0.5034 44.61 0 

Vulnerability 0.104 5.106 0.0288 

  

  Dependent Variable - SC County Losses (DRI Hazards) 

Independent Variable R Squared F p 

Risk 0.0015 0.0637 0.8019 

Risk (No Drought) 0.4457 35.38 0 

Exposure 0.0118 0.527 0.4717 

Exposure (No Drought) 0.4482 35.73 0 

Vulnerability 0.0863 4.156 0.0475 

  

  Dependent Variable - SC County Losses (DRI Hazards - No Drought) 

Independent Variable R Squared F p 

Risk 0.0014 0.0635 0.8023 

Risk (No Drought) 0.4456 35.37 0 

Exposure   0.0118 0.5263 0.4717 

Exposure (No Drought) 0.4481 35.72 0 

Vulnerability 0.0863 4.156 0.0475 

  

  Dependent Variable - SC County Fatalities and Injuries 

Independent Variable R Squared F p 

Risk 0.0159 0.7115 0.4035 

Risk (No Drought) 0.0164 0.7327 0.3966 

Exposure 0.0159 0.7089 0.4044 

Exposure (No Drought)  0.0142 0.6352 0.4797 

Vulnerability 0.0017 0.0737 0.7873 

  

  Dependent Variable - SC County Fatalities and Injuries (DRI Hazards) 

Independent Variable R Squared F p 

Risk 0.0005 0.0229 0.8805 

Risk (No Drought) 0.0013 0.0577 0.8112 

Exposure 0.0006 0.0248 0.8756 

Exposure (No Drought)  0.0008 0.0364 0.8495 

Vulnerability 0.0002 0.009 0.9249 
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variance it explains is in county fatalities and injuries, with an R2 of .0678 against 

the same.   

 Comparing the WRI to EM-DAT loss data through regression shows some 

of the same trends found in the downscaled USDRI (Table 5.13).  WRI risk 

shows no ability to explain variability in EM-DAT economic or human loss data 

from 1960-2012 at the country level.  When examined separately, the exposure 

and vulnerability components of the WRI also explain no variability in county level 

loss.  In general, the ability of the WRI methodology to explain human and 

economic losses is poor, as only at the state level of examination does the model 

display any relationship to losses.  While losses are not the only way to assess 

the usefulness of a risk index, they are certainly a very visible one.  

 

5.6 Reliability analysis 

 In order to test whether the variables used in the calculation of the USDRI 

are measuring the same underlying construct, the Cronbach Coefficient Alpha 

  Table 5.13: Regression results for WRI (country level) components against losses 

  Dependent Variable - Country Losses 

Independent Variable R Squared F p 

WRI Risk 0.0019 0.3192 0.5728 

WRI Exposure 0.0349 6.176 0.0139 

WRI Vulnerability 0.0013 0.2299 0.6322 

  

  Dependent Variable - Country Fatalities and Injuries 

Independent Variable R Squared F p 

WRI Risk 0.0005 0.0917 0.7624 

WRI Exposure 0 0.0029 0.9571 

WRI Vulnerability 0.0227 3.962 0.0481 
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(∝) was used to measure the internal consistency of the model. The most 

common use of ∝ is to measure reliability based on the correlation between sub-

indicators.  Values for ∝ range from 0 to 1, with values closer to 1 representing 

better correlation, indicating that the sub-indicators measure the item of interest 

(in this case, risk) well (Cronbach, 1951; Nardo et al. 2005).  Acceptable values 

of ∝ range from .6 to .9, but values over .7 are more commonly recognized.  

Running the test on the 24 variables in the USDRI (19 vulnerability and 5 

exposure variables - 1 for each hazard) resulted in an ∝	of .64 at both the state 

and county scale, meaning that the USDRI represents the input provided by the 

variables.  The marginal ∝	at both scales could be due to sample size, which 

generally should be above n=100 for an unbiased estimate (Yurdugul, 2008).  

Increasing sample size at the state level is problematic, but can be accomplished 

at the county level by adding more states to the study area.  Dropping variables 

that show little or no correlation to the overall index can also increase the 

reliability of the USDRI in future iterations.  Candidates for variables to exclude at 

the state level are the Gini Index (correlation to overall index of .02), literacy rate 

(.084), and political fragmentation (.180).  At the county level, low correlation 

variables that might be excluded to improve reliability include hospital beds / 

10,000 (.056), drinking water safety (.08), and dependency ratio (.118).  That 

different variables are poorly correlated with the overall index at different scales 

underscores importance of context-specific evaluation of vulnerability at different 

scales and in different places.   
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5.7 Summary and conclusions 

 This chapter detailed and assessed the USDRI concept of risk, which is 

comprised of the exposure and vulnerability components that were detailed in the 

previous two chapters.  In this proof of concept, modeled after the World Risk 

Index, there is a distinct spatial expression of exposure, vulnerability and the risk 

surface that results from combining the two.  In the US, there are distinct areas of 

higher risk to the natural hazards included in the index found in the Southeast US 

and along the West Coast.  At the county level in South Carolina, risk is mainly 

concentrated in the coastal areas.   

Closer examination of the risk determined by the USDRI shows that it is 

heavily influenced by its exposure component, while the contribution of the 

vulnerability component seems more ambiguous.  This is also the case with the 

WRI at the global scale.  As a test of the ability to downscale the WRI to assess 

risk, the USDRI succeeds, but it is clear that there is room for improvement of the 

model at the subnational scale. In addition, when risk is examined against hazard 

losses, it is apparent that including drought in the index greatly lowers the 

relationship between risk and loss.  Without drought in the model, USDRI risk 

does a much better job of explaining the variability in human and economic 

losses.  
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CHAPTER 6: CONCLUSION – THE WAY AHEAD FOR THE USDRI 

 

6.1 Overview 

This dissertation explored the utility of downscaling a global scale risk 

index to the subnational scale in the United States.  To establish the analysis 

within risk and vulnerability research, a contemporary, global scale risk index – 

the World Risk Index - was utilized as a basis for the downscaling effort.  A 

subnational index for the US at both the state and county scale was created 

using the same methodology as the global scale index.  This subnational index 

was then examined using spatial statistics to determine patters of exposure, 

vulnerability, and risk.  In addition, regression was used to examine the main 

components of the index, as well as to determine the relationship between the 

index and both monetary and human losses.   

Three main questions guided this research.  First, can the WRI be 

customized to the subnational scale in the United States?  Which indicators are 

appropriate for use at the state and county level in the US?  Next, does the 

disaggregation of disaster risk to state and county scales provide more detailed 

understanding of the spatial distribution of risks and the components of risk? Or, 

given the availability, quality, and resolution of data do the drivers of disaster risk 

at the subnational level merely mirror the extant pattern at the national scale?  
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Finally, how does the risk assessment produced by a top-down approach 

compare to other US risk assessments?  What unique value or insights can be 

gained from using a top down approach? 

The purpose of this chapter is to summarize the key findings of this 

research and answer the questions posed by the research.  The contribution of 

this research, a critique of it, as well as directions for future research are also 

presented.     

 

6.2 Summary of research findings 

 The main purpose of this dissertation was to replicate a global-level 

composite risk index for US at the state and county level.  This research was 

concerned mainly with establishing a proof of concept for the subnational index 

based on current understandings of risk and its components and created by 

downscaling an established index at the global level, the World Risk Index.  

Using an established methodology allowed for an assessment of the veracity of 

global level variables and overall risk assessment at a finer sub-national 

resolution, which could in turn serve as an example for other sub-national 

replications.  Such downscaling can increase information about risk and its 

drivers, generate discussion about risk, and perhaps provide insight into 

solutions that reduce risk.   

 The modularity of the WRI is one of its strongest points.  The index 

produces not only an overall risk score, but also scores for exposure, 

susceptibility, coping capacity, and adaptive capacity.  The disaggregation of 
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components allows for actions targeted against a particular hazard or 

vulnerability component as well as actions that can influence multiple 

components.  It could also allow resources to be prioritized into order to improve 

a society’s weakest areas. The modularity of the WRI is also forward-looking, as 

it can provide for risk assessments for future and evolving hazards, such as 

those associated with global climate change. 

 
 
6.2.1 Research Question 1 
 
 The creation of the USDRI in this dissertation demonstrates that the World 

Risk Index methodology can be captured at smaller scales, where both 

understanding of risk and actions to reduce it are of critical importance.  

Exposure data, as well as raw data for the vulnerability subcomponents, are 

shown available from public sources.  The physical calculation of the index 

requires relatively few resources; the needed resources include a computer 

capable of running and rendering maps with a geographic information system, 

GIS software such as ESRI’s ARCInfo, statistics software, spreadsheet software 

for storing and manipulating data.   This work presents a relatively 

straightforward –though involved - methodology for capturing risk at different 

scales at the subnational national level. 

Some of the global indicators used in the WRI were appropriate for use at 

subnational scales.  Variables such as literacy rate and healthcare expenditure 

that were used in the global level index have explanatory power at the 

subnational level and are appropriate for inclusion in the USDRI.  Some global 



www.manaraa.com

 

136 
 

variables were omitted entirely in the calculation of the USDRI, as no close 

proxies existed at the subnational level.  For example, the WRI uses the number 

of female representatives in national parliament as a measure of gender equity.  

While calculable at the global level for nations, it is problematic to do so at the 

US state and county level as no current database has compiled this information.   

Substitutions were required for others variables, as some that apply on a 

global scale made less sense at the subnational scale.  For instance, the 

measure of poverty – a proven vulnerability indicator – used at the global level 

was percent of the population living on less than $1.25 US/day, which is the 

international poverty level.  For a developed nation such as the US, the number 

of people living below the international poverty level is negligible.  Data do not 

exist to quantify this measure for the US in any case.  A more appropriate 

substitute for this variable was the percent living below the US poverty level, 

which for 2010 was $11,139/individual, or $30.52/day (IRP, 2010).  Other 

variables where data were available at both the global and subnational level had 

little explanatory power for states and counties.  An example of this is gender 

parity in education, which was used as an adaptive capacity variable in the WRI.  

Although important at the global level, in the US gender parity in education is 

more related to demographics than inequalities; all but two states had more 

females enrolled than males.  A more meaningful measure of gender parity at the 

state and county level is in the workforce so this was the substitution.   

 The discussion of each subcomponent in Chapters Three and Four 

detailed the disposition of each global variable in the USDRI.  The exposure 



www.manaraa.com

 

137 
 

component of the USDRI utilized the same methodology and data as its WRI 

counterpart with the exception of sea level rise data, for which more recent 

information is available for the US.  Of the 23 variables in the vulnerability 

component of the WRI, ten were used in essentially the same form in the USDRI, 

nine required use of a close proxy, and four were dropped altogether (Table 6.1).  

The inability to directly replicate the WRI vulnerability variables speaks to the 

issue of data availability at different scales.  Some data may only reside at the 

 Table 6.1: Disposition of WRI vulnerability variables in the USDRI 

 

Unchanged Proxy Used Dropped

Dependency Ratio
Share of population without 

access to improved sanitation

Share of population without access 
to an improved water source

GDP per capita
Share of population 
undernourished                             

GINI Index Extreme poverty population

Unchanged Proxy Used Dropped

Physicians per 10,000 inhabitants Corruption Perceptions Index Good governance

Hospital bed per 10,000 
inhabitants

Insurances  

Unchanged Proxy Used Dropped

Literacy rate Combined gross school enrollment
Share of female representatives in 
national parliament

Biodiversity and habitat protection Gender parity in education Forest management

Agricultural management Water quality

Public health expenditure Private health expenditure

Life expectancy

Adaptive Capacity

Suceptibility

Coping Capacity
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global scale, while at the local levels more detailed (in content and in 

georeferencing) data is often available.   While changing variables at different 

scales based on availability can compromise top-down consistency between 

scales, it also opens the door to the idea of contextualization of the WRI at 

subnational scales.  Whenever possible, future use of the WRI should use 

vulnerability indicators that best describe vulnerability in the area of study.   

 

6.2.2 Research Question 2 
 
 The results of this analysis show that disaggregating disaster risk provides 

valuable insight into the drivers of that risk.  Assessing risk at smaller scales 

showed variations in risk and its components between scales (Table 6.2).  At the 

US level, the overall mean risk score for the country was 5.14, with a range from 

                          Table 6.2: Differences in WRI and USDRI Disaster Risk  
                          Scores for the US 
                              

 

WRI Mean  
USDRI 

State Mean 

WRI / 
USDRI 

State Diff 

Overall Risk 
7.40 5.14      2.26** 

Exposure 
14.73 14.84   -.11 

Vulnerability 
49.5 34.67   14.83** 

Susceptibility 
31.35 21.67     '9.68** 

Coping 
Capacity 69.79 43.24   26.55** 

Adaptive 
Capacity 47.34 39.11    '8.23** 

     (*significant at .05; **significant at .01) 
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1.95 to 10.61.  These figures alone show the value in assessing risk to hazard at 

smaller scales, as doing so brings out patterns and differences that are masked 

by a single score at a larger geographic scale.  Table 6.2 shows the differences 

in the WRI and USDRI calculated mean scores for risk, exposure, and 

vulnerability and its components.  USDRI state scores were significantly different 

from their WRI counterparts for vulnerability and all of its components.  These 

differences likely result from the aforementioned use of some proxy variables in 

the USDRI.  In addition, aggregation bias provides a possible explanation for the 

differences.  Specifically, the modifiable areal unit problem occurs when similar 

analysis produces different results based on the scale of analysis.  Interestingly, 

for risk the USDRI mean state score was significantly different than the WRI 

mean risk score for the US.   The exposure mean is almost equal to the WRI 

exposure mean.  However, the US state vulnerability mean is significantly lower, 

which makes the US state risk mean also significantly lower than WRI risk. 

In addition, the compilation method of the USDRI also allows for 

assessment and better understanding of each individual component of risk, and 

how these components contribute to risk, at smaller scales (see Appendices 1-4).  

The main driver of risk within the WRI is exposure; this is consistent at all levels 

examined.  This aspect of the WRI/USDRI methodology seems to be inherent in 

the mathematical calculation of the model given the high range of exposure 

values and the relatively lower range of vulnerability values found in the state and 

county samples used in index calculation.  In any case, this merits careful 

examination in future compilations using the WRI methodology.   
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 Spatial analysis also provides for a better understanding of risk, displaying 

patterns and clusters of risk that are not readily apparent or discernable at larger 

scales.  In general, visual examination of the USDRI risk results shows high 

areas of risk in the Southeast US and along the West Coast, while areas in the 

center of the country have a greater diversity of risk scores.  Significant 

differences in the geographic patterns of risk emerge when drought is excluded 

from the exposure component, as the risk that was present in the Midwest 

virtually disappears.  For South Carolina, visual examination of risk shows a 

much less clear spatial arrangement, though without drought, disaster risk 

appears concentrated in coastal areas.   

Although analysis for spatial autocorrelation showed little at the US level, 

significant clustering was indicated at the SC county level when drought was 

removed from the exposure component.  ALMI and Getis-Ord Gi* analysis 

identified significant clusters of risk at both the state and county level.  For the 

US, high risk clusters were in the Southeast (with drought) and along the Gulf 

Coast and in New England (without).  In South Carolina, some clustering of high 

risk is noted with drought, but a clear pattern of high risk in coastal areas and 

lower risk in the northwest part of the state emerges when drought is removed.  

In general, the spatial arrangement and clustering of risk closely resembles that 

of exposure, indicating, at least in this iteration of the model, once again that 

exposure is a main driver of risk.  In short, from a geographic perspective, when 

disaggregating risk, exposure, and vulnerability from the global to subnational 

levels, scale matters.  This conclusion is reinforced by correlation and regression 



www.manaraa.com

 

141 
 

analysis of the relationships between risk and the components, and again 

requires further analysis in future builds of the USDRI.   

 
 
6.2.3 Research Question 3 
 
 The top-down, deductive approach used in the construction of the WRI 

and the downscaled USDRI has many benefits.  The approach is easy to 

understand and replicate, as is based on recognized definitions and conceptions 

of risk and its components.  The method is also easy to adjust.  For instance, 

within the dissertation, the expert weighing used for the WRI was critically 

examined by substituting an equal weighting scheme.  When equally weighted, 

vulnerability scores increased at both the state and county levels, with 

statistically significant differences in vulnerability and its components at each 

level.  However, consistent with other studies, the overall spatial pattern of 

vulnerability remained the same irrespective of the weighting scheme.   

 This research question also sought to compare how risk as defined by the 

USDRI compared to other measures of subnational US risk.  This proved 

somewhat difficult to accomplish, as this dissertation exists precisely because 

these other measures of risk do not at the US level.  However, some methods of 

comparative analysis were feasible.  For one, the vulnerability component of the 

USDRI was compared to the Social Vulnerability Index (SoVI), an existing 

vulnerability index that, in the WRI conceptualization, only measures 

susceptibility.   Although there is no “right answer” for vulnerability since it is a 

precondition that is difficult to assess after the fact, comparison of USDRI and 
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SoVI vulnerability showed both similarities and differences.  At the state level, 

there were some similarities in the broad pattern of vulnerability between the 

USDRI and SoVI, Specifically, Gi* analysis identified a small cluster of higher 

vulnerability in the south central US based on SoVI, and a larger cluster of 

vulnerability in the same area based on the USDRI.  At the SC county level, both 

methods showed clusters of low vulnerability along the coast, but disagreed on 

where vulnerability was concentrated elsewhere in the state.  Comparisons 

between SoVI and only the susceptibility component revealed many spatial 

similarities between the two at both scales of analysis. 

 Another method of assessing the merits of the USDRI’s top-down 

approach was to compare USDRI risk to known losses.  This was done at both 

the state and county levels.  For US states, there was little correlation between 

USDRI risk and economic or human losses, however, when drought was 

removed from exposure, moderate correlations emerged between risk and all 

types of losses used in the analysis.  This pattern repeated itself when regression 

was used to determine if risk explained the variability in losses.  At the county 

level, the trend in risk vs. losses was much the same for economic losses.  

However, risk at the county level showed little correlation with human loss; nor 

could it explain variability in deaths or injuries from hazard even when the 

exposure component was adjusted.  This is likely a result of the influence of 

extreme loss-causing events at smaller scales of analysis, or could be a product 

of poor loss data.  Finally, the original WRI was also compared to losses in the 

same manner.  USDRI risk at both the state and country level showed closer 
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correlation with and better ability to explain variance in loss than the WRI.  As a 

whole these results suggest that while the top-down methodology used to create 

the USDRI is understandable and appropriate, the inputs into the WRI should be 

carefully considered and put into context.  In other words, the results show that 

place matters.  Interpretation of the USDRI results should be conducted with full 

knowledge and understanding of the underlying variables used in the model, the 

weighting and aggregation process, and the context of the area for which they 

are computed.   

 

6.3 Contributions and critiques 

 This dissertation detailed the construction of the United States Disaster 

Risk Index, a proof of concept composite index designed to assess and promote 

the further understanding of risk at subnational levels.  As such, this work 

produces the first contemporary risk index for the United States at multiple 

scales.  It incorporates a number of concepts, such as its modularity for all 

components, as well as its inclusion of both natural and societal factors in the risk 

equation, elements that are not currently used at the US state scale.   

 The main contribution of this research is the creation of an easily 

understood and utilized tool that has immediate utility in examining disaster risk, 

especially its spatial arrangement, and the variety of factors that contribute to it.  

The USDRI can serve as a both a nexus of insight and study on the subject of 

disaster risk at the sub-national level, as well as a targeted disaster risk 

management tool appropriate for informing policy and planning.  The ability to 
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change or give the USDRI variables different weights allows for contextualization 

of the index for any hazard and / or socioeconomic situation.   

From a geographic perspective, the USDRI details human environment 

interaction in its overall definition, and also considers and allows for the spatial 

arrangement of risk and its components at multiple scales.  This contributes to 

furthering and exploring the methodology of other work on the composite 

indexing of risk, notably Birkmann (2007).  The utilization of both exposure and 

vulnerability components in the risk equation allows for further study into the 

interplay between the two.  The spatial analysis of risk, exposure, and 

vulnerability presented in this work provides a basis conceptualizing the 

arrangement of each, which highlights geographic areas or aspects of risk that 

merit closer examination.  The ability of the USDRI to show risk and its 

components at different scales allows for a more complete understanding of risk 

by showing how it varies at more local scales.  This is consistent with Barnett et 

al. (2008), which concluded that vulnerability is context specific and that 

examinations of it at larger scales lose relevance and meaning (Barnett et al. 

2008). 

The USDRI can also assist the US in implementing the 2005 Hyogo 

Framework for Action (UNISDR, 2012).  In its most recent progress report on the 

Hyogo Framework, the National Science and Technology Council – Disaster 

Reduction Subcommittee recognized as a limitation the lack of a national multi-

hazard risk assessment to inform planning and development decisions (NSTC, 

2010).  With further validation and refinement, the USDRI can fulfill the Hyogo 
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requirement for the US to have a multi-hazard risk index that is comparable to 

the national level scores created by the WRI. 

This research exposed potential methodological shortcomings in the 

construction of the WRI and the deconstruction of it to the sub-national scale 

(USDRI).  The most prominent of these was makeup of the exposure component.  

In its current form, the exposure component contained hazards with a variety of 

onset speeds and durations.  Measuring exposure for different time periods, 

although driven by methodology and data availability, can be problematic.  

Shorter time periods do not seem to capture the true nature of the US hazard 

experience, as was seen with the lack of flood exposure with only an eight year 

period of data as well as the shortcomings noted with earthquake exposure, 

specifically the failure of the index to recognize the earthquake risk to the 

southeast US. 

The most prominent of the hazards included in the exposure component 

was drought, which exerted a seemingly inordinate amount of influence on the 

human-focused nature of exposure as well as the overall risk scores and spatial 

distribution of risk.  The multi-hazard approach of the USDRI is a strong point, 

but the hazards included in future iterations of the index should be chosen with 

care to ensure they do an adequate job informing the model as to the type of risk 

that affects places.   

In its current form, the index utilized a physical exposure component.  This 

implies that the risk score produced by the index indicates risk to life or health.  

Thus the inclusion of both drought and sea level rise in the index are dubious at 
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best.  According to SHELDUS data, there were no fatalities or injuries due to 

drought in the US for the period 1960-2012 (HVRI, 2014).  Further, sea level rise 

is a possible hazard and will not likely result in many direct human losses.  

Perhaps predictably, the USDRI assessed risk had little ability to explain human 

losses to hazard in the US unless drought was removed from the exposure 

component.  This highlights the need to contextualize inputs to the index based 

on the study area.  In a more developed country like the US, hazards such as 

drought and sea level rise may be more appropriate for use in determining 

economic risk versus risk to humans. 

There are hazards not included in the USDRI that do relate to human risk 

and should be included in the exposure component.  The most prominent, from a 

US perspective, are severe weather and tornadoes.  In 2012, these two hazards 

combined for 44 percent of US human losses; for the period 1960-2011 they 

accounted for 44 percent. (HVRI, 2014).  This, once again, highlights the need to 

tailor the exposure component to the hazard profile of the study area.  

The weighting scheme of the vulnerability component is also a likely 

shortcoming and potential source of error in the WRI/USDRI.  The USDRI 

replicated the weights the WRI assigned to each variable and subcomponent.  

Although the weighting scheme used in the WRI was expert judgments, such 

weighting schemes often suffer from subjectivity.  In addition, the weights were 

intended for use on a global scale, not a national or subnational scale.  Different 

dynamics at more local scales could render the weights or even the variables 

themselves less useful and in need of replacement at these scales.  Even so, 
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equal weighting is not entirely appropriate for the USDRI as it is currently 

constructed.  When subcomponents do not have an equal number of variables, 

weighting variables equally leads to some variables and components having 

much more influence on the model than others.  The USDRI should be modified 

so all components have an equal number of variables, allowing for the 

establishment of a baseline of vulnerability and risk, or expert opinion about 

vulnerability at other than global scales should inform indicator selection for the 

index.  Alternately, the mean of the variables in each vulnerability subcomponent 

could be used as the component score, which reduces the effect of having a 

different number of variables in each subcomponent, albeit at the expense of 

making the model more generalized. 

Statistical examination showed the risk assessed by the USDRI is closely 

related to the exposure component at both the state and county level.  The 

relationship between vulnerability and risk was much weaker.  This does not 

necessarily indicate the results of the USDRI are “wrong”, but it does require 

further investigation.  The current USDRI suggests risk reduction strategies that 

focus on reducing exposure.  A contextual re-evaluation of the hazards included 

in the exposure component as well as the vulnerability indicators and their 

weighting may paint a different picture of risk drivers. 

 

6.4 Future Research 

 This dissertation has created many avenues for future research.  First, 

indices like the USDRI can capitalize on locally available data to include 



www.manaraa.com

 

148 
 

variables that cannot currently be included in global indices.  The WRI 

recognized many variables - such as housing conditions, disaster preparation 

and early warning, social networks, and adaptation strategies - that are 

appropriate for use in its conception of vulnerability.  However, it could not 

include them because data were lacking or did not exist.  Incorporating these 

variables could improve model’s representation of vulnerability and, by extension, 

risk. 

 Future downscales of the WRI should carefully consider the hazards 

included in the exposure component.  Although the multi-hazard exposure 

component makes the WRI comprehensive, it opens the door to over-

representing certain hazards.  This work has shown that including drought at the 

subnational level is questionable because of its undue influence.  In addition, the 

WRI includes sea-level rise, meaning it mixes not only fast and slow onset 

hazards, but also current and potential hazards.  Future attempts to represent 

exposure for the US in an index could reconfigure the component to omit these 

hazards, as well as consider the inclusion of other hazards that impact the US, 

such as tornadoes and wildfires.  Along the same lines, the time frame of the 

hazard data included in future work should be expanded as much as possible to 

best represent the hazards that impact the study area.  In general, better 

exposure data will help improve the risk profiles produced by the index. 

 Another consideration for future work on downscaling the WRI is 

experimenting with different variable weights as well as the overall aggregation 

method for the index.  Although the proxy variables used in the WRI are 
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grounded in vulnerability literature, expert weighting of the current variables or of 

others used in future versions of the model may improve its performance.  

Changing the aggregation method could help improve the model’s performance 

in predicting loss, or help strike a balance between the influence of the exposure 

and vulnerability components.  In addition, the global variables used in the index 

produced some counter-intuitive results as the subnational scale, underscoring 

the need for the utilization of variables appropriate for the chosen study area in 

future work. 

The WRI as currently configured measures risk of physical exposure to 

hazards.  However, it can be configured to represent other types of risk, such as 

risk of economic damage.  In fact, the PREVIEW dataset utilized in this study 

also has economic exposure surfaces.  Computing economic exposure for the 

US at the state and county scales and using the same as exposure input for the 

WRI model would lead to a comprehensive assessment of economic risk.  This, 

in turn, could provide more insight into overall US hazard risk as well as 

complement this study’s assessment of physical risk.  Moreover, including long 

duration areal hazards like drought in an economic risk index for the US is 

appropriate, as drought is a large contributor to US economic losses from 

hazards.  Additionally, in keeping faith with the original overall intent of this 

research, the exposure and vulnerability components of the model can be 

configured to assess environmental security at the subnational level from a 

hazards perspective. 
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A potential use of the WRI is in assessing risk to future hazards. The 

inclusion of sea-level rise in the current model provides the groundwork for the 

potential utilization of the index to assess risk from global climate change. This 

can be accomplished by adjusting current levels of exposure to climate sensitive 

hazards to levels hypothesized in future climate scenarios, or by creating 

exposure surfaces for hazards that may emerge in the future, as was done with 

sea level rise in this study.    

Future subnational versions of the WRI can be used to assess changes in 

risk and vulnerability over time.  If the model is constructed on a fixed time period 

with the most recent data, subsequent iterations will show changes in the 

subcomponents.  Change detection can be used to monitor risk and vulnerability, 

or to assess the effectiveness of policies or programs designed to reduce the 

same. 

Finally, one of the intended uses of a comprehensive index for assessing 

risk at the subnational scale is to assess state security, with a focus on 

environmental security.  Using the downscaled WRI in such a manner could have 

a wide variety of tactical and strategic applications, such as monitoring state 

stability, increased local knowledge for governmental and non-governmental 

organizations that may operate in a given area, assessments of sensitivity to 

current and future environmental hazards, and increased knowledge of risk and 

its drivers at other than global scales.   
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6.5 Postscript  

 This research has explored the utility of downscaling a global risk index to 

two different scales at the subnational level.  The development of the USDRI, 

examination of its results, critical examination of the insights it provides, and the 

further utilization of it can serve as a critical input to hazard risk management.  

Specifically, the USDRI serves as a starting point to better understand risk, its 

spatial distribution, and its physical and socio-economic drivers.   Ideally, the 

USDRI as presented in this research and future use of it will bring its concept of 

risk into practice to inform policy and planning of risk reduction efforts at the 

scales where such action is appropriate and feasible.   Finally, the lessons 

learned in this study can be applied to studies that downscale the WRI for other 

nations.  In keeping with the ultimate intent of this work, the results and insights 

presented here can be used as a stepping stone to foster a better understanding 

of environmental risks that could threaten stability or state cohesion at a time 

when human vulnerability is gaining recognition as an important aspect of 

environmental security.
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APPENDIX A: SELECTED TABLES

Table A.1: US state scores for USDRI, components, and subcomponents 

Rank State Risk

Risk            

(No drought) Exposure

Exposure       

(No drought) Vulnerability Susecptibility

Lack of Coping 

Capacity

Lack of Adaptive 

Capacity

51 California 10.61 4.94 25.99 12.11 40.81 21.10 62.51 38.83

50 Wyoming 10.11 0.02 30.70 0.05 32.92 19.99 41.05 37.74

49 Louisiana 9.20 5.24 28.10 16.00 32.76 23.07 34.79 40.43

48 Florida 7.93 3.34 22.59 9.50 35.13 23.32 45.87 36.21

47 Alabama 7.88 1.64 22.35 4.65 35.26 23.55 38.90 43.34

46 Georgia 7.37 0.45 20.90 1.27 35.29 22.59 38.97 44.31

45 North Carolina  6.76 1.24 20.19 3.70 33.49 22.30 37.74 40.45

44 Washington 6.46 0.92 18.14 2.58 35.60 20.29 51.13 35.38

43 Kansas 6.25 0.01 16.98 0.02 36.79 22.18 41.43 46.77

42 South Carolina 5.93 1.50 17.25 4.37 34.38 23.26 39.18 40.72

41 Connecticut 5.92 2.36 16.61 6.61 35.65 20.33 52.19 34.42

40 Virginia 5.79 1.05 18.27 3.31 31.70 19.99 36.12 39.00

39 Texas 5.65 0.78 13.33 1.84 42.36 22.22 58.86 46.02

38 Oregon 5.38 0.53 15.98 1.56 33.64 21.05 45.12 34.77

37 Nebraska 5.35 0.04 13.47 0.10 39.71 21.50 49.96 47.68

36 Oklahoma 5.31 0.04 14.68 0.11 36.18 23.31 39.88 45.36

35 Ohio 5.20 0.40 14.65 1.13 35.52 22.34 41.83 42.39

34 Maine 5.20 1.21 17.02 3.97 30.57 21.50 43.43 26.78

33 Arkansas  5.05 0.26 13.60 0.70 37.11 24.10 41.51 45.72

32 West Virginia 5.04 0.80 15.88 2.51 31.74 23.16 34.78 37.29

31 Illinois 5.01 0.45 10.42 0.94 48.02 21.08 78.67 44.32

30 Utah 4.88 0.10 12.54 0.26 38.89 22.04 45.71 48.92

29 Iowa  4.81 0.06 13.30 0.17 36.16 21.53 37.42 49.55

28 Arizona 4.78 0.06 12.55 0.16 38.11 23.58 51.17 39.60

27 Indiana 4.78 0.30 12.75 0.81 37.51 21.88 44.49 46.18

26 Pennsylvania 4.68 0.60 12.61 1.61 37.08 21.53 49.93 39.80

25 New Mexico 4.59 0.00 13.51 0.00 34.01 24.85 41.32 35.86

24 New York 4.58 1.41 14.54 4.48 31.47 20.73 40.12 33.56

23 Tennessee 4.54 0.47 13.30 1.37 34.10 22.89 35.04 44.39

22 North Dakota  4.53 0.04 12.08 0.11 37.51 20.58 43.92 48.04

21 Mississippi 4.51 1.14 13.17 3.34 34.26 25.22 34.58 42.99

20 New Jersey 4.50 1.16 13.47 3.48 33.43 20.37 42.29 37.64

19 Idaho 4.49 0.07 11.71 0.19 38.35 23.24 45.77 46.04

18 Delaware 4.49 0.44 12.96 1.27 34.63 20.02 51.92 31.95

17 Minnesota 4.48 0.03 13.46 0.08 33.29 20.65 41.89 37.35

16 Vermont 4.39 0.89 14.14 2.86 31.08 20.21 41.28 31.75

15 Missouri 4.36 0.21 12.02 0.59 36.26 22.36 45.02 41.39

14 Montana  4.19 0.01 11.87 0.04 35.32 22.75 39.33 43.89

13 New Hampshire 4.17 1.23 13.04 3.84 32.01 19.52 43.22 33.30

12 Kentucky 4.16 0.64 11.68 1.81 35.64 23.73 38.52 44.67

11 South Dakota 4.13 0.02 11.14 0.07 37.10 22.72 39.78 48.83

10 Michigan 4.12 0.23 11.87 0.65 34.72 22.55 42.75 38.86

9 Massachusetts  4.00 2.03 12.85 6.51 31.12 20.45 45.15 27.77

8 Wisconsin 3.95 0.08 11.41 0.24 34.64 21.15 43.89 38.89

7 Nevada 3.89 0.08 11.66 0.23 33.40 21.08 41.66 37.46

6 Colorado 3.86 0.00 9.85 0.00 39.21 20.46 56.82 40.36

5 Rhode Island 3.71 1.81 12.07 5.88 30.76 21.15 40.04 31.09

4 Maryland 3.64 0.19 12.75 0.67 28.57 19.50 34.88 31.35

3 Hawaii 3.61 0.87 12.35 2.98 29.25 20.53 35.01 32.23

2 D.C. 2.23 0.05 11.73 0.24 19.02 16.23 21.70 19.12

1 Alaska  1.95 0.27 7.29 1.02 26.82 19.67 36.76 24.05
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Table A.2: SC county scores for USDRI, components, and subcomponents 

 

Rank County Risk

Risk            

(No drought) Exposure

Exposure       

(No drought) Vulnerability Susecptibility

Lack of Coping 

Capacity

Lack of Adaptive 

Capacity

46 Jasper   21.44 2.06 55.24 5.30 38.81 20.50 47.10 48.85

45 Marion  13.84 4.54 43.36 14.21 31.93 23.01 46.99 25.81

44 Georgetown   11.03 7.26 34.49 22.72 31.98 22.85 39.74 33.36

43 Charleston   8.55 5.46 28.57 18.25 29.93 17.82 31.03 40.96

42 Beaufort   8.47 3.97 25.53 11.97 33.16 21.38 40.08 38.03

41 Hampton   7.84 0.95 19.84 2.39 39.52 23.48 47.41 47.70

40 Abbeville   7.47 0.00 19.75 0.00 37.81 23.84 47.38 42.22

39 Barnwell   7.33 0.29 22.85 0.92 32.08 22.91 46.43 26.90

38 Orangeburg   7.32 1.10 21.61 3.24 33.89 21.84 46.84 33.00

37 Spartanburg   7.24 0.10 17.74 0.24 40.84 20.15 56.66 45.71

36 Laurens   6.86 0.03 20.58 0.09 33.35 21.27 47.20 31.59

35 Greenville   6.82 0.00 17.42 0.01 39.13 19.00 50.46 47.94

34 Horry   6.79 4.94 19.30 14.02 35.20 19.48 42.62 43.52

33 Clarendon   6.73 1.68 18.30 4.56 36.80 22.70 43.86 43.84

32 Chesterfield   6.65 1.51 18.89 4.29 35.21 22.02 47.44 36.19

31 Lee   6.61 1.68 18.68 4.73 35.41 23.38 48.09 34.76

30 Anderson   6.59 0.01 16.97 0.03 38.83 21.29 48.21 47.01

29 Sumter   6.22 1.54 17.54 4.34 35.45 20.79 42.14 43.43

28 Kershaw   6.20 1.39 17.50 3.93 35.42 21.05 39.17 46.05

27 Oconee   6.12 0.05 18.05 0.16 33.93 21.84 39.82 40.14

26 Saluda   6.05 0.07 15.28 0.17 39.60 21.54 49.01 48.28

25 Darlington   6.02 1.47 17.60 4.29 34.23 21.38 46.02 35.31

24 Newberry   5.94 0.15 15.23 0.40 39.02 19.60 44.50 52.95

23 Chester   5.75 0.72 15.60 1.95 36.85 23.22 39.99 47.35

22 Florence   5.65 0.98 16.54 2.86 34.16 20.25 38.46 43.79

21 Allendale   5.60 0.48 18.91 1.63 29.64 24.68 34.82 29.42

20 Bamberg   5.50 0.64 15.33 1.78 35.86 24.04 29.98 53.57

19 Union   5.47 0.15 17.93 0.48 30.52 21.86 35.37 34.34

18 Colleton   5.25 1.34 17.26 4.41 30.39 23.70 40.49 26.99

17 Aiken   5.21 0.03 13.68 0.07 38.09 20.57 49.77 43.96

16 Calhoun   5.11 0.98 13.62 2.62 37.53 20.76 47.83 44.02

15 Pickens  5.09 0.00 13.64 0.00 37.33 20.52 47.34 44.14

14 Edgefield   5.06 0.00 13.59 0.00 37.27 20.48 43.93 47.41

13 Greenwood   5.06 0.01 16.03 0.03 31.54 20.65 31.31 42.69

12 Cherokee   5.00 0.21 14.77 0.63 33.88 20.75 43.91 36.98

11 Dorchester   5.00 1.91 15.10 5.78 33.08 19.67 47.45 32.13

10 Williamsburg   4.81 1.07 14.54 3.23 33.08 23.67 48.41 27.17

9 York   4.57 0.68 12.27 1.82 37.28 19.10 46.90 45.84

8 Lancaster   4.50 0.92 12.49 2.56 36.02 22.35 41.05 44.68

7 Fairfield   4.20 0.72 11.12 1.90 37.77 22.95 45.03 45.34

6 Dillon   4.19 1.09 12.27 3.19 34.13 23.74 40.97 37.68

5 Lexington   4.17 0.57 11.43 1.57 36.44 18.05 50.75 40.53

4 Berkeley   3.81 1.47 11.73 4.53 32.47 19.23 49.57 28.63

3 Marlboro   3.78 0.85 11.53 2.60 32.77 22.54 39.88 35.89

2 Richland   3.40 0.66 11.95 2.33 28.46 17.79 33.46 34.14

1 McCormick   1.71 0.07 4.67 0.20 36.62 22.76 41.75 45.38
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 Table A.3: US state exposure in percent of population exposed annually (sea level rise 
expressed in percent exposed to 1 meter rise in sea level) 

 

Rank State Exposure Earthquake Cyclone Flood Drought Sea Level Rise

51 Wyoming 30.70 0.05 0.00 0.00 30.65 0.00

50 Louisiana 28.10 0.00 5.89 0.46 12.09 9.66

49 California 25.99 11.61 0.00 0.07 13.88 0.43

48 Florida 22.59 0.00 5.30 0.03 13.09 4.17

47 Alabama 22.35 0.00 4.55 0.06 17.70 0.03

46 Georgia 20.90 0.00 1.10 0.02 19.63 0.14

45 North Carolina  20.19 0.00 3.37 0.03 16.49 0.30

44 Virginia 18.27 0.01 2.80 0.04 14.96 0.46

43 Washington 18.14 2.45 0.00 0.00 15.56 0.13

42 South Carolina 17.25 0.00 3.70 0.03 12.88 0.64

41 Maine 17.02 0.08 3.61 0.00 13.05 0.28

40 Kansas 16.98 0.00 0.00 0.02 16.97 0.00

39 Connecticut 16.61 0.00 6.24 0.05 10.00 0.32

38 Oregon 15.98 1.44 0.00 0.00 14.42 0.12

37 West Virginia 15.88 0.00 2.24 0.27 13.36 0.00

36 Oklahoma 14.68 0.00 0.00 0.10 14.58 0.00

35 Ohio 14.65 0.01 0.85 0.27 13.52 0.00

34 New York 14.54 0.03 3.50 0.18 10.06 0.77

33 Vermont 14.14 0.82 1.98 0.06 11.27 0.00

32 Arkansas  13.60 0.23 0.22 0.25 12.90 0.00

31 New Mexico 13.51 0.00 0.00 0.00 13.50 0.00

30 New Jersey 13.47 0.00 2.42 0.19 9.99 0.87

29 Nebraska 13.47 0.00 0.00 0.10 13.37 0.00

28 Minnesota 13.46 0.00 0.00 0.08 13.37 0.00

27 Texas 13.33 0.00 1.62 0.19 11.49 0.04

26 Tennessee 13.30 0.07 1.25 0.05 11.94 0.00

25 Iowa  13.30 0.00 0.00 0.17 13.13 0.00

24 Mississippi 13.17 0.00 3.18 0.07 9.84 0.07

23 New Hampshire 13.04 0.06 3.68 0.00 9.20 0.10

22 D.C. 12.96 0.00 0.86 0.03 11.69 0.38

21 Massachusetts  12.85 0.00 6.09 0.03 6.34 0.39

20 Maryland 12.75 0.00 0.43 0.01 12.08 0.23

19 Indiana 12.75 0.02 0.66 0.13 11.94 0.00

18 Pennsylvania 12.61 0.06 1.48 0.07 11.00 0.00

17 Arizona 12.55 0.16 0.00 0.00 12.39 0.00

16 Utah 12.54 0.25 0.00 0.00 12.28 0.00

15 Hawaii 12.35 2.66 0.10 0.00 9.37 0.23

14 North Dakota  12.08 0.00 0.00 0.11 11.97 0.00

13 Rhode Island 12.07 0.00 5.59 0.11 6.19 0.18

12 Missouri 12.02 0.03 0.40 0.16 11.43 0.00

11 Montana  11.87 0.04 0.00 0.00 11.84 0.00

10 Michigan 11.87 0.00 0.58 0.07 11.22 0.00

9 Delaware 11.73 0.00 0.24 0.00 11.49 0.00

8 Idaho 11.71 0.18 0.00 0.00 11.52 0.00

7 Kentucky 11.68 0.11 1.15 0.55 9.87 0.00

6 Nevada 11.66 0.22 0.00 0.00 11.43 0.00

5 Wisconsin 11.41 0.00 0.00 0.24 11.18 0.00

4 South Dakota 11.14 0.00 0.00 0.06 11.08 0.00

3 Illinois 10.42 0.02 0.67 0.25 9.48 0.00

2 Colorado 9.85 0.00 0.00 0.00 9.84 0.00
1 Alaska  7.29 0.38 0.00 0.05 6.27 0.58
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Table A.4: SC county exposure in percent of population exposed annually (sea level 
rise expressed in percent exposed to 1 meter rise in sea level) 

 

Rank County Exposure Earthquake Cyclone Flood Drought Sea Level Rise

46 Jasper   55.24 0.00 4.38 0.01 50.00 0.92

45 Marion  43.36 0.00 14.21 0.00 29.15 0.00

44 Georgetown   34.49 0.00 20.60 0.05 12.15 2.06

43 Charleston   28.57 0.00 11.74 0.09 11.23 6.43

42 Beaufort   25.53 0.00 9.80 0.17 13.75 2.00

41 Barnwell   22.85 0.00 0.92 0.00 21.93 0.00

40 Orangeburg   21.61 0.00 3.23 0.01 18.37 0.00

39 Laurens   20.58 0.00 0.07 0.02 20.49 0.00

38 Hampton   19.84 0.00 2.34 0.00 17.45 0.05

37 Abbeville   19.75 0.00 0.00 0.00 19.75 0.00

36 Horry   19.30 0.00 13.57 0.03 5.32 0.43

35 Allendale   18.91 0.00 1.63 0.00 17.29 0.00

34 Chesterfield   18.89 0.00 4.29 0.01 14.60 0.00

33 Lee   18.68 0.00 4.73 0.00 13.95 0.00

32 Clarendon   18.30 0.00 4.51 0.05 13.74 0.00

31 Oconee   18.05 0.00 0.00 0.15 17.89 0.00

30 Union   17.93 0.00 0.48 0.00 17.45 0.00

29 Spartanburg   17.74 0.00 0.24 0.00 17.49 0.00

28 Darlington   17.60 0.00 4.28 0.01 13.31 0.00

27 Sumter   17.54 0.00 4.34 0.00 13.20 0.00

26 Kershaw   17.50 0.00 3.92 0.01 13.57 0.00

25 Greenville   17.42 0.00 0.01 0.00 17.41 0.00

24 Colleton   17.26 0.00 3.58 0.00 13.29 0.82

23 Anderson   16.97 0.00 0.00 0.03 16.94 0.00

22 Florence   16.54 0.00 2.86 0.00 13.68 0.00

21 Greenwood   16.03 0.00 0.00 0.03 16.00 0.00

20 Chester   15.60 0.00 1.94 0.01 13.65 0.00

19 Bamberg   15.33 0.00 1.78 0.00 13.55 0.00

18 Saluda   15.28 0.00 0.10 0.07 15.12 0.00

17 Newberry   15.23 0.00 0.37 0.02 14.83 0.00

16 Dorchester   15.10 0.00 5.67 0.00 9.32 0.11

15 Cherokee   14.77 0.00 0.63 0.01 14.14 0.00

14 Williamsburg   14.54 0.00 3.23 0.00 11.31 0.01

13 Aiken   13.68 0.00 0.07 0.01 13.61 0.00

12 Pickens  13.64 0.00 0.00 0.00 13.64 0.00

11 Calhoun   13.62 0.00 2.62 0.00 11.00 0.00

10 Edgefield   13.59 0.00 0.00 0.00 13.59 0.00

9 Lancaster   12.49 0.00 2.56 0.00 9.93 0.00

8 Dillon   12.27 0.00 3.17 0.02 9.09 0.00

7 York   12.27 0.00 1.81 0.01 10.45 0.00

6 Richland   11.95 0.00 2.32 0.01 9.62 0.00

5 Berkeley   11.73 0.00 3.78 0.03 7.47 0.72

4 Marlboro   11.53 0.00 2.53 0.07 8.93 0.00

3 Lexington   11.43 0.00 1.53 0.04 9.86 0.00

2 Fairfield   11.12 0.00 1.87 0.03 9.22 0.00
1 McCormick   4.67 0.20 0.00 0.00 4.47 0.00
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